UNCLASSIFIED gm e FILE ropy

SECURITY CLASSIFICATION OF THIS PAGE (When Dau‘Emermi)4

SRS CAT

REPORT DOCUMENTATION PAGE BEFORE COMPEETING FORM . IR
O T. REPORT NUMBER 3 GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER NN ?" x
= AFIT/CI/NR 88- &8 ! B
= a YITLE fand Sabtitie) S. TYPE OF REPORT & PERIOD COVERED ’ :

T} A FAUVLT TOLERANT SLLF- LOUTIMNG ¢14D 8 THESIS | j
N COMYUTER NETwolK To POLOG)’ 5. PERFORWN‘G 03G. REPORT NUMBER - ::
F . Ly .l
< T AUTHOR(Y . CONTRACT OR GRANT NUMBER(a) ::
’(
) TOMY L. MITCHELL C
2 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. R N T RO E s TAsK , ‘ !'f\
AFIT STUDENT AT: prTH CARolINA STATE + ;
LNIVERS 7Y e
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE -
1988 & ;;
13. NUMBER OF PAGES e)
S (3
A
14, MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oflice) 15. SECURITY CLASS. (of thie report)) LS 8:
AFIT/NR UNCLASSIFIED Sy
Wright-Patterson AFB OH 45433-6583 A

152, DECLASSIFICATION/ DOWNGRADING

SCHEDULE ;
6. DISTRIBUTION STATEMENT (of this Reporl) . ‘ :‘
DISTRIBUTED UNLIMITED: APPROVED FOR PUBLIC RELEASE DOTI1C f

ZLECTE e
AUG 0 3 1988 A

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, {{ different from Report)

¢
SAME AS REPORT QD -y
X
. RSP P : 5 .:
'8 SUPPLEMENTARY NOTES Approved for Public Release: IAW AFR 190-1 L
LYNN E. WOLAVER 1940 sy ©g
Dean for Research ahg/Professional Development &
Air Force Institute 8f Technolo :
Wright-Patterson AFB_OH 45433-6583
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) ‘(
.‘ q
20. ABSTRACT (Continue on reverse side If necessary and ldentity by block number) ;
ATTACHED C e
SR
P
.

DD "Jg:"n 1473 EDITION OF 1 NOV 65 1S OBSOLETE UNCMS§!E!E!

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

TRy
.*". \ \"\.

Sty Pt et AR A ARG e R S o ot

e or A a0ty afh w3 P e M T E vk A atl ATB e E 2 h s R aVE @ et <A a¥e a2 a’s al L WY Y VI WU T T I T Y R U NT WU WO N D)

A Fault Tolerant Self-Routing Computer Network Topology

by t

Tony L. Mitchell

- - -
O

A thesls submitted to the Graduate Faculty of
North Carolina State University
in partial fulfillment of the
requirements for the Degree of
Doctor of Phllosophy

- -
N X X

Department of Electrical and Computer Engineering

Raleigh
1987

Approved by }
b

D Co-Chairman of Advisory Committee "

Co-Chairman of Advisory Committee

- e W P
-3

0
D
Q
U
»

RN RXTNAN Q O Y y) v ’ (- n
R o D O A R e R TR o AR TN R TR B L) T A S M ML S Tt RO S

i1

BIOGRAPHY

Tony L. Mitchell 1is a Llieutenant Colonel in the Unlted
States Air Force. He is currently an Assistant Professor of
Mathematics in the Department of Mathematical Sciences at

the U. S. Air Force Academy in Colorado Springs, Colorado.

Pll Redacted
Colonel Mitchell was vorn in [N N

- - - He received his military commission in

1970, as a Distinguished Graduate of the Alr Force Reserve
Officers Training Program at North Carolina Agricultural and
Technical State Unlversity in Greensboro, N. C. Military
assignments {nclude Base Communications Officer at Loring
Alr Force Base, Malne (197f{ - 1974), Computer Systems
Analyst at Tinker Alr Force Base, Oklahoma (1976 - 1978),
Communications Detachment Commander at Izmir, Turkey (1978 =~
1980), and Instructor of Mathematical Sciences at the United

States Afir Force Academy (1980 -1982).

Colonel Mitchell’s professional Interests Include computer
communications, digital architecture, software systems, and
applied mathematics. He has a B. S. In Mathematics from
North Carolina Agricultural and Technlcal State University
(1970), and an M. S. in Information and Computer Sclence
from the Georgia Institute of Technology in Atlanta (1975).
Tony and hls wife, the formetr Carolyn Mosley of Greenwood,

8. C., have three sons, Anthony, Kevin, and Gary.

- Py -~ g
> IFIE= . R &

..
- -

b

MUROOUNOBOCONT ' 0 (% o Ua® o J
ettt b Y, ARG NN I".l"'a’l'c.l'o’l.v‘l‘t.l.s.ﬁ't.“'aJ't.b.o.i.n.l'-.d'- o, C'»'I’o..l'n.l'a Ay 0N % o l’t“'yl’c 'a’i‘ &'o 080 0,0 00 0,0 A".:

i1 ,.
ACKNOWLEDGEMENTS '

For his guidance, patlence, and encouragement, I thank my
advisor, Dr. Arne A. Nilsson. I also express my appreciation
« to Dr. Wushow Chou for his early and continued understanding
and support. I am especially grateful to my lovely wife,
Carolyn, for her constant encouragement and strong belief

that God would see us through the most challenging years of

l?
4

4
J
g
t
A

3
)
B our marrlage. Most Importantly, I thank God for Hlis
"o

i sustaining grace during the past five years.

- -

PR T e o)

-
S

1
T

*

RROSIMUAON OB Y WAV N, ..n“‘l..’n‘.’ BAS AN .l 4 UL .ul.) ..l. Ko .l‘i "l ,l"l\ o :‘WWMMﬁﬁ

L

iv

TABLE OF CONTENTS

Page
LIST OF FIGURES sestsevsssestastesacerssanns oo vidd
LIST OF TABLES ® * & & o ¢ ¢ 9 O e 0 e 0 * ® 8 ® 8 0 ¢ 8 O O 0T S 90 6 O S " O e P e e e xl
1. INTRODUCTIONvcevvveveen Ceeeee e Cerree et 1
2. MOTIVATION FOR A NEW TOPOLOGY et eie e 5
2.1. Specific Operatlional Requlirement cees D
2.2. Integrated Services Digital Network 9
2.3. Why Spiral Over Traditlonal Topologles? 27
3. REVIEW OF TRADITIONAL TOPOLOGIES cheecesesaans 29
3.1. Introduction crese e cree s e e ees. 29
3.2, BUS TOPOlOgY it tesoteeontsocnenesonsnsanes 29
3.3. Ring Topology et Cee st 30
3.4. Star Topology ..veireerinnnsnonrnnans veessesess 31
3.5. Fully Connected Mesh Topology vt 32
4. TIME DELAY FORMULAS FOR LAN TOPOLOGIES ceeaen 34
4.1. Introduction e s e et ‘.. 34
4.2. Carrier Sense Multiple-Access with Collision
Detection (CSMA/CD) <...... e 34
4.3. Token RIngcvvivirieeeinennnes Ceve e e.e. 40

 m e T -

.

XA P

AT e - e

RFE P R e

JEC I S e

CE ot

el

P X R e

R N R A T N Y A N I A W A L R AT U A R T L A R L R I A R R SN N L L TN A Yo B
v
4.4, Token BUSs ...ttt itnnteorsoaesoessaannnnnnensa 42

4.5, Slotted RinNgciiiiiii it vt nnnnens 46 Y
‘!

4,6. Ordered Access Bus ettt e e 47 3
4.7. Comments on the Star Configuration Access f
MEthod ...evvvvrnnvnnnennnn, vt 49 ' o

3

4.8. Effect of Propagatlion Delay and Transmiss!en ﬁ
el

Rate on Performancecccivinnnann 50 ﬂ

4.9. General Results for Other Network Approaches .. 55 }
'

R

o

5. SPIRAL NETWORK DESCRIPTIONvovivenenenenenennnnn. 56 v
5.1. Architectureciiiii ittt nennnnans 56 F'
o

5.2. Typlcal Node Conflguratlionceeeeeevenenns 67 o
0

5.3. Key Spiral NetworK Featuresceeeeeeeenen 71 .
]

5.4. Simulation Model Summarycieiieeennaccans 78 z
N

&

"

6. ROUTING IN A SPIRAL NETWORK0iveevneecnnncnnnns 79 k
6.1. Introduction N 79 y
(]

6.2. The Routlng AlGOrIthm ...uvvvrenennenennnnns cev. 79 \
U

6.3. Examples of How the Routing Algorithm »
18] 0T o= X 83 :

)

t

6.4, SUMMBLY «vvevvvonnernnenennnneenonnsennenesanens 89 '5
Nt

o

[}

7. ANALYSIS OF THE ERROR FREE SPIRAL NETWORK TOPOLOGY .. 90 ﬂ
%

7.1. Introduction ittt nnnennnnenees 90 ':
Nt

7.2. Theorem on Disjoint Pathsvivean. 92 h
7.3. Theorem on Maximum Path Length 93 ' X
'~

U

&

l‘.

g ‘-

IR OO OO OO KO AR N ™ Nt T T ey O T 3 T A b AN AT v s N o

‘-

e om XY
oy

"o
o)

PR
o g

LA
- -~
22

.
]
[
+
3)
‘\
ot
3

T O

10. TOPICS FOR ADDITIONAL STUDY

11.

12. APPENDICES

c'a & PPN N NS LW A N YR AL PLE I v LR R < “+ 7 . A * G O

vi

7.4. Theorem on Trafflc Between any

Source-Destination Palrc.civuenen
7.5. Theorem on Expected Link Trafflc
7.6 Theorem on Total One Way Link Traffic
7.7. Theorem on Mean Path Length
7.8. Analysis of System Utilization
7.9. Analysis of Mean Queue Length

7.10. Analysis of Mean Network Delayc....

ANALYSIS OF SPIRAL NETWORK TOPOLOGY UNDER FAILURES .
8.1. Introductionc.iceveieeeccerenecenseesannns
8.2. Arblitrary Node Fallure(s)ccveceveven.
8.3. Fallure of a Complete Modulecc.....
8.4. Fallure of Multiple Modulesv.c..
8.5. SUMMArY ..vvvevereosrsosocsosenoosnnnsssscssenssoess
CONCLUSIONSttt irtevensonsnensoeossoonnencnnsnans

LIST OF REFERENCES ¢ttt reiereenennsnnososss

A. EVOLUTION TO ISDN WITHIN THE BELL OPERATION

COMPANIESciititeeetenrensnnssscsnsnnsnns
B. SIHULATIdN MODEL DESCRIPTIONcc.vvuenn
C. SUMMARY STATISTICS IN TABLE FORM

oo

129

OO GOOOGN JLNC AT N] - ~ " GV D! [w-
RN SN AT .«"'-.l.n'.‘q'l’a'l " avh q"l‘. W.h'h S ."l...i -h‘o ¥a Wy U \ " St ey - W « o] “ i \ \ "\" ! W"l 00,000, '(y,

B -
o e
G X S S

> BRI LTS 2918t of2 R 4V 2t Sh 2ty f UV g’ kg 13 g Bg gV’ L Y NN W W U WY

vil
C.1. RESPONSE TIME SUMMARY¢vceeeveeeveee 168
C.2. MEAN QUEUE LENGTH SUMMARY 169

C.3. MEAN SYSTEM UTILIZATION ceeseeeess 170
SUMMARY OF SIMULATION RESULTSecvveenn. 171
SIMULATION MODEL SOURCE CODE LISTING 219

>

B e T L D o e T TR R I N N RS AN o.!‘c..tt AT A0, A v ‘¢ MO LR M B WY (WX - AT

W U KT

LT

oo o

viii

LIST OF FIGURES

Seven Module Spiral Network Topology

Concept of Potential ISDN Frame .
Example of ISDN Capabilities
ISDN Local Access

Characteristics:

Broadcast Bus Topology ..
Ring Topology
Star Topology

Fully Connected Mesh Topology .

CSMA/CD Bus: Example of Operation
Delay-Throughput Performance of Varlous Protocols . 39
Average Message Delay vs. Throughput for Token Bus and
Token Ring Under Balanced Trafflic and Gated

Service (10Mbps)

Average Message Delay vs. Throughput for Token Bus and
Token Ring Under Balanced Trafflc and Gated

Service (5Mbps)

Throughput vs. Offered Load

Mean Delay vs. Throughput: Polling and CSMA/CD

Throughput as a Functlon of a for Token Passing

R AE RN TN

A R

2
's ol' l"..

-

N N | - .t N - P .
0NN N N N L R Rt e G e T T e T R A R R N S A B AT T S T s e Ve

iz
and CSOMA/CD ..t i i it iirintnneeneanssonsoennonensnnas 53
4-8. Maximum Potential Data Rate for LAN Protocols 54
5-1. Minimum Four Module Spiral Network 56
v 5-2. Alternate Form of Minimum Spiral Network 57
5-3. Flve Module Spiral Network e 58
5-4. Seven Module Spiral Network and Threading Pattern . 59

5-5. Eight Module Spiral Network and Threading Pattern . 60

ii 5-6. Eleven Module Spiral Network et 61
% 5=-7 Thirteen Module Spiral Networkcoueveveen. 62
ﬁ. 5-8. Fourteen Module Spiral Network Ceeeeoneas 63
3 5-3. Module Threading Pattern and Spirals 65
i 5-10. Eight Module Network Threading Pattern 65
. 5-11. Typlcal Spiral Node et e e et it e e 67
% 5-12. Input Configuration of a Spiral Node 68
E;. 5-13. Output Configuration of a Spiral Node 70
X 5-14. Twelve Modulc Network and Threading Pattern 73
; 5-15. Fifteen Module Network and Threading Pattern 74
3
? 6~1. Threading and Unwound Spiral Pattern 80
3 6-2. Seven Module Spliral Network, No Fallures 84
ﬁ 6-3. Single Arbitrary Node Failurecc.vviiveveen. 85
: 6-4. Two Node Spiral Network Failurecc0uveun 86
? 6-5. Three Node Splral Network Fallureccieeeeee. 87
? 6-6. Unreachable Destination Exampleccvevuveen. 88
6-7. Destlnatiod Reachable After Several Changes 89

e o w ow aew

Y

y
k)
b
1)
1 AV TV Y 3e7. 02 1w R A W W ', W R YT g R W N W LW E o Nt R, Y, Al Tt m e f ™
R R O T O O WOACATRN 0." U A U W PN) A8 * M&bh:&l)ﬂﬂi&xﬁ'ﬂﬁ@

X

7-1. Node (1) Sends to Node (4)t ivrennnns 101

. 7-2. Node (1) Sends to Node (2) Ceee e 101
7-3. Node (1) Sends to Node (3) e e 102

7-4. Node (1) Sends to Distant Nodeccotiviveerens 103

) 8-1. Mean Queue Length Comparison ceaeaan 131
8-2. Network Response Time Comparisoncovevun 132
8-3. System Utilization Comparisonic0ieiveunnnn 133
it 8-4. Complete Module Fallurecciiiieiienncnnns 136
% 8-5. Threading Pattern With Two Adjacent Modules Killed.!37
o 8-6. Every 0Odd Numbered Module Killed00. 138
o 8-7. Every Even Numbered Module Killedcc0cuven. 139
) 8-8. Several Modules and Nodes Killed 140

8-9. Half of Each Even Module Killedccicuieecn. 141

1) . 3 » LY W W W WA . S T T T N T R R R e R R T T I A AT R
RMOLOOOANOR ORI 0 OO0 8 GV AN LN - CUASIY c'! iﬂ’m&d&ﬁ{\ﬁt\.{;{}f:ﬂ‘:xi&xﬁ;m\‘ BN ';;;.(-.ﬂ'l;‘si':'.'.-ﬂﬁ“rf.ﬁh L

A TP RIRAT LAY U RIS XN XXX AR URN R LN YUVUU VU WNARYUVWO W N YO AKX S KANANYY Yo AN R'ataia i 7oy ROV S

xi

'?; LIST OF TABLES '

y 7.1. Average Traffic Result Comparisons e109
s 7.2. Mean Path Length Comparisoncc.000. ... 119
o 7.3. System Utillization Comparisoncevouveveunes..122 X
b 7.4. Mean Queue Length Comparisonccevevee...125

‘ 7.5. Mean Network Delay Comparisonc.c0v....128

Q
[}
k . 8.1. Comparison of Undelivered Messages135

L

y o
-

N VR

-
- Y
- 8

" o o>
-

R

"

ot
1

D)
1
"
)

LSy

A At m o b U O
o, "\-"‘J' \‘.-"\-..J’"” N Chy "‘.' ‘f\f\. .’;F

LW~ 7 g T L Iy Py LR LI SR S R C Y R
B T o P e e e ™ b S

R
ST -

1)
..
K
L]

O oeor M L AL o
0, B P AT YA AN

1. INTRODUCTION

This document reports on the development and analyslis of a
new, easily expandable, highly fault tolerant self-routing
computer network topology. The topology applies equally to
any general purpose computer networking environment. This
new connectivity scheme is named the “spiral” topology for
reasons that will become evident shortly. A spiral network
evolves by addling modules to a minlmum starting topology. A
module consists of four fully connected computer nodes. The
modules are added to the existing topology one at a time,
unti{l the desired network slze ls attalned. Flgure 1-1(3)
shows an example of a seven module, 28 node network. The
module threading pattern 1In fligure 1(-1(b) depicts more

clearly the order in whlch modules are connected.

The spiral topology features a simple internal self-routing
algorithm that adapts quickly, and automatically, to falled
llnks or nodes. The simple routing feature, our selectlon
of four computer nodes to form a module, and the ease at
which the network can be expanded, are all dlrect
consequences of our cholce of a base four (4) node numbering

system for internal control of the network.

Analysis confirms that throughout the spiral network,
routing can be done “"on-th#-fly" based on spiral and

directlon flags Inlitlalized at the source node. No global

T NP P A N
‘«'\Am. ,h‘.s 9, '.' ,..- ,.n M Mg Py N .lo'!h N

... A ‘~ .'ln -"'-. A m“-“

{
v
\J
\

Caata’ €30 40 AR Hatat WL TSR R W WU U MU WU VO W U WO N R R R AR AR A S R O OO IO Y KR

Seven Module Splral Network.

b). Threading Pattern.

Flgure 1-1. Seven Module Spiral Network Topology.

-

! . e - T N PR P O m ot
R A A O e T T N RS ' PR S AT B " D L (S L M e SO Lo M OO A R T

R SR T PR UL A LA L N R R N MR N MU P UL U O R A N U A N R S N e I T T T R N RTINS

3 1

3

AT

network connectivity or routing tables are necessary at
nodes. There is no global network overseer (master) node
slnce all nodes operate at the same common precedence level. ;
‘; A particular node has routing and status Kknowledge of

directly connected nodes only.

$ The spiral topology, with 1its fast on-the~fly routing
¥ capability, is highly amenable to fiber optic communications
o in both local and wlde area computer networks. The fast

: routing attribute precludes storing of messages whille a)

si routing decision 1is being made . Further, since the :
g' sirulation model assumes, and is run under Poisson arrival :
i rate of exponentially distributed messages, Integrated }
$. Services Digital Network (ISDN) type traffic can be passed

§ over the network with ease. This Is possible because ISDN .
L traffic is expected to be an independent mix of voice, data, :
E and video that will be transmitted using circuit and packet .
% switching technology. A Polsson arrival rate of trafflc 3
¥ means that the time between message arrivals s

& exponentially distributed, and the Independent traffic mix ‘
? of voice, data, and video {s best modeled by selecting the é
ﬁ size of transmitted messages from an exponential E
$ distribution. Assuming a fixed transmission rate, the

A service time of thls traffic mix wlll be exponentlally

1 distributed.

- g

R
1,559, L)

~ 3 ~ ~
aaaaaaa W8, 944, l‘n‘l'. PO LA NN 0‘!‘;"'5‘!“_.“. D" l‘q!. q,l‘.'_l .!“p (OO UM NN |‘.l.| JONL)

LI X SRR A N A LA AT WAL I U P U UL U R RS R AR R L N N D U X T X X R T 0. Ca0 gl S 38 Val¥ vad

]

4

The motivation for a new computer network topology is
introduced 1in chapter 2, where two current applications 1
areas are dliscussed. In chapter 3, we present a brlef
description of the four traditional network topologies: the !
bus, ring, star, and mesh. Chapter 4 consolidates the time) ¢
; delay formulas for the most popuiar 1local area network

topologies. f

. Chapter 5 marks the beginning of the new and significant

- v -

contribution to the field of Computer Communications, since

that chapter contains a general description of the spiral

- -
il G

network topology. Chapter 6 addresses how the spliral

>

routing algorithm operates with and without failed computer

LA
T e e

4 nodes. A detailed analysis of the error free spiral network

is presented 1In chapter 7, and chapter 8 contalns the

A e
- - -

results of analysis when nodes have failed. Chapter 9

summarizes conclusions resulting from a thorough study of

s
et

g

-

the splral network topology. And flnally, Chapter 10

=
-

contains a discussion of suggested areas for additional

-

-

study.

-

-
-

-

L A e e
L AT A

A S i o
e et - - -

E e e -
-

-

!

¢ \ > A - L ol ‘) TV " R R P
."Q"'!\‘.l.‘_""’ls".h‘!h‘!h".'u".h !.l ?.l'!.; ﬂ.l.. 1) .\l.!.‘\.‘.l...l " P Nt o Fon PP R n.l '« N W \"‘-'l 2SN MU ‘) » '\ o .' » * A’\\ \ 0 V‘ \ \' Ok A ® }

.....

SRR R R N R X R R A Y R R A R A AR A AR N T ETrY RARTLANMNANN AN KL AN AN LR ' AT RANUP Y SUPU TR TU UYL

.- -

5 »

2. MOTIVATION FOR A NEW TOPOLOGY

v vy .

2.1, Speciflic Operational Requlrement

-

The National Aeronautics and Space Administration (NASA) s

E currently pursuing its objective of having a Space Station é
? operational in the 1990’s. NASA planners foresee the ?
f station evolvlng- from an Initial physical "module® (1] that .
- supports critical 1life support and spacecraft navigational %
functions, to a fully manned self-sustaining station where 3

i several dozen space pioneers 1live and work for extended :
.: periods of time. The statlon will evolve one module at a g
it time, until the complete desired configuration 1is attalined §
: (i1. X
)

'!

NASA expects each module to contain 4 - 5 computer nodes g

: that must interact and be highly tolerant to faults within 5
; that module, and throughout the entire network. A fault ls ?
i defined as a failed network node or link. Limited physical §
3 space within each station module, and exorbitant cost, .
g preclude hardware duplication as the answer to the fault g
f tolerance requirement. Further, NASA envisions the station &
: evolving to a total of 10 - 20 modules, each contalining 4 - 0
B 5 local area computer network nodes [1]. NASA requires that $
‘ all nodes have access to all others, no matter where they a
y are physically pdsitioned in the Space Station. N

- -
"

-

) . N h
DO 0 000 NG, " PV YT n . . -
R Ot S T T s N A b AT 4 N A ALK T 1 I PA IR O M N8 T o 8w]

e e

6

- - - -

1 Although the station 1Is not expected to become operatlonal

until the 1990’s, Space Station planners and developers have

(g

by already defined falrly clearly the type of environment, and

»
. -
-

communications needs expected 1In that environment. In

particular, a Space Statlion Information System [48] has been

-
a_re_w,

described, and functlons of the varlous components have been

allocated to specific data system building blocks.

- .

The following list documents the anticlpated functions of

LB A e

\ the Space Station Information System [481]:

- Manage Customer/Operator Dellvered Data

PR IR L L
- - .

- Manage Customer/Operator Supplied Data
- Schedule and Execute Operations

= QOperate Core Systems

LGSR -]

- Manage Facilities and Resources

- Develop, Simulate, Integrate, and Train

- -

-

!
: - Support Space Statlon Programs

i "
B .b
. It can be seen from this list that the “users™ of the Space
; . Statlon Information System will Include Space Statlon core |
’_ S
; systems, crew members, as well as customer equipment.)
: o
% $
;‘ Although subject to change as technologlcal advances and ﬂ
) 4
; constraints are realized, the following general functions of X
the Command and Data Management Support Subsystem for the N

Space Station are expected to mold the type of

i
H
[} (4
(}

WO v ~ Y 3!) L%) A O AT M O
A OO O Y R e e e e e e B R N M A R O

.

aaptEoRt RS RN R OO OO N I R
N A L L M R
OSSR SR KOO0 Dy |'l|l.| U TEN

P LI TR | P S IS OE N R R)
e A R At sy

7

communications network ultimately deployed aboard the

station ([1]):

* Communications and Tracking
Voice intercom
Detached vehicle
Ground crew and vehicles
* Data Handling
Acquisition/Retrieval of data
Data dlstrlibution (automatic and upon demand)
Data processing/number crunching
Storage of data
Realtime support for dlsplay and crew input
x Closed-Circuit TV
Cameras and monitors
* Timing
Generation
Dlstrlibution

Timing dlisplays)

These general functions must be Implemented In a fashion

o

that Is both efficient, and user friendly. Further, a key
aspect of the resulting communications network is that it be
highly fault tolerant. In an environment as Isolated from
the earth as the Space Station will be from a loglistics
viewpoint, hlghl& rellable fault tolerant communications

among those aboard the station, as well as between the

W)
A\

»

AR . R PRI L (AR AR AT NE A AN AR LN A O L T O T N Ty Yy oy Yy &Y. §4g &1,) 1. 4% cec §in @

8

station and ground control, is essentlal. ¢

Therefore, NASA has identified the following preliminary

requirements of the communications network that will form

the heart of the Space Station Data System [11:

LN B

x Highly fault-tolerant
* Having between ten and one hundred nodes

% All nodes are created equal, but not all messages

T g ©

* The network will operate In the Space Station

composed of from ten to twenty space lab modules,
with four to flve nodes per module

x Total Space Station configuration has the maximum

g W ie Ry P Aoy)

dimension of 150 feet B

O

* The space lab modules are butted up against each A

other to form complex shapes E

* The network management functions will be a

‘t

distributed among the nodes E

.

Based on these requirements, it becomes quite clear that a g
X3

local area network with standard Interfaces (and identical !
\J

equipment where possible), and high bandwidth capability is o
|

necessary to provide both responsiveness and the high degree g
-

of fault tolerance mandated. Of course the degree of fault %
4

tolerance 1Is more a function of the connectivity of the)
resulting network, than it Is the speed as perceived by the 4
D

user, s
(O}

4

3

P,

BN LY L A ALY T L A » ~ .
2t T S A N e T S T S T T T e et e BT e Tt Ty

U RN S B OO UG PR AU Y L AN LT R A KRR R O A B R S N N R R T N O D R

9

To meet these requirements, NASA needs a network topology

P o

that 1is 1) highly tolerant to failure(s); 2) -easily

expandable without having to reconfligure the existing

e e -

topology; 3) capable of operating via decentralization of

2 control; and 4) capable of ha-dling an integration of volce,)]

: video, and data trafflc. It will be shown that the splral 3
: :
: topology meets these needs. 5
" 2.2. Integrated Services Dlglital Network

e A

2.2.1. Introduction X

Cewen e 3L .

IR B g

K This section presents a brlef overview of the Integrated

-

$ Services Digital Network C(ISDN). Speciflic transmisslons

-

protocols that can be used for Integrating volce and data {n

T -

3 a local area network are addressed in [2]. Further, a o
: detailed analytical discussion of several mathematical :
§ models suitable for integrating volice and data s presented g

by M. Schwartz in [31. 4
' z

Information networks around the globe are approaching a

; revelation in new service and revenue opportunitles. The O
revelation 1s 1ISDN. The opportunities derive from the }
transport power and flexlbility of ISDN’s standard access ?

? interfaces and integrated channel structures. End users, ﬁ

network providers, and network-systems suppliers alike will

benefit from a host of Integrated voice and data services

RO g W
N “’-“"")J"-"'-“.ﬂ,"c".'-’!‘-'-.u‘.'A'.‘»’.'A‘.‘n‘.‘n'.‘t AN AUNDAN T W, l‘-‘!‘a‘.’u'i‘- t‘-‘l’—'l‘-‘.l'a 68,00, 0 Sl N RS T .‘Qﬂ Cﬂ‘h‘ﬁ "t t,!

S I P N

St e .
>

)

5 N . . - e e ,
»’lspﬁ."‘l.ﬂ":‘? 'h‘?’n“.‘u HWh ‘.' ?h‘!'l‘!'i’!'v ;"x'.h‘.h‘!"‘uh I X ‘I! !‘\‘.ﬁ MY R A X !*.l X \ N TN k a9, ' .Qn '.: v A" \ o X

10

which ISDN makes possible for the first time [4]).

Evolution of the public-switched telephone network In the
past has been governed primarily by the need to provide
voice services. The network that evolved was analog, and
predominately electromechanical. Before 1962 (when pulse
code mnrdulation was introduced), the transmission facilities
for the telephone network were all analog [5, 6]1. This
analog network was not well suited to serve the emerging
needs of data, facsimile, and video. In the past decade,
however, the many advantages of digital systems (small cost
and slize, large transmission and switchling capablilitlies,
high signal quality, flexibility, ease of maintenance) have
promoted the converslion of transmission and switching
systems from analog to digital in many telephone

administrations around the world.

The criteria for justifying converslon to digltal technology
have been lower 1life-cycle operating costs rather than
increased revenue due to new nonvoice services. So although
the switched network 1Is slowly being transformed to a
digital one, the architecture of the facilities is still

biased towards providing voice service [6].

The adoption of digital techniques in the public switched
network makes 1t possible and cost effective to Integrate

volce, data and video services 1Into a single Integrated

£ e X e AT R e b A TR R e W8 TR R T VAR af Al w gl Vb ab Tah @ iR Oah i Ua8 Bad 508 Pa Vol el @t AR vall Wok dnd vab Mot Wul va® V20 408 0¥ N,k V0 .40

e e

[P o -gr=ar]

-_me_wr

-

MUY AN R R TR SR T A WA AN NP WA MR NN RN KR T NN KR AR N U KL L NS RN U R I T W S SR T I O SR TOR FOR TR O POy PO R OO K

11
Services Dligital Network. The ISDN 1Is envisloned as an

v international digital communications network, supporting a

o wide spectrum of user needs (8]. The central theme In ISDN

v is that different services, all of them digital in nature,

. can use this same connection or channel, resulting in better
s

- channel utilization.

&

o)

The fundamental principles enmbodied {in an ISDN are (7]
ii digltizatlion with high bandwidth, world-wide standards, and
: integrated fuctionality and services. The three elements
< generally recognized as necessary to support these
% principles are [3]: 1> All digital channels are used
end-to-end; 2) the network handles a multiplicity of
N services with possibly differing bandwidths using
interleaved bit streams; and 3) there are standard

5 interfaces for user access.

The major bottleneck Impacting the evolutlon to an ISDN
K appears to be the converslon of exlsting subscriber local

f loops and equipment, to diglital operation (9, 10].

3
! 2.2.2. Definition of an IDSN
iy
2
ﬁ The goal of the ISDN is to provide a versatlile, multiservice
K
o network with standard customer interfaces and international
0y capabilitles. Thls goal results in the definition and
l'»
&' standardization of digital i{nterfaces, both user-to-network,
2
i
o
)
1)

L}
‘»“».. L9, E$ yn - . r o ®] ~a ~ .y - ~
: “‘"s‘ 0‘-31‘,‘\'; :'A‘.‘ ‘.‘ .‘-~‘ 5‘&‘9‘) LR At AR ..q\..|l"‘l l‘r'l.ﬁlb.t‘..!.‘.v.‘.t.!. ~'~ ".‘!'a'..l A '\‘A«'; AL y -.. ;‘l .a".d'ﬂf.'."eb ,t\.".,..“o~,lh.l .l“. W \ " ’. . n'

SRR AN N SR IR VR N VY LN S WY S VT VT UR U N RN YO RN GR R T TSR R O R s W $.0°9.0° 4" .0 Ouh Mol d.g A4 gt cal gt pt

12
and network-to-network. ISDN is a generic term referring to
the Integration of communication services transported over
diglital facllitles. As a public network concept, ISDN deals
with the evolution of the digital network as a carrler of
both voice and data applications (8, 11]. The ISDN aim is to
provide cost-effectlve, end-to-end digital connectivity to
support a wide range of volce and nonvoice services 1[121].
The International Telegraph and Telephone Consultation
Committee’s (CCITT)> conceptual principle is that “The ISDN
will be based on and evolve from the telephony ISDN by
progressively incorporating additional functions and network
features, lncluding those of any other dedlicated networks
such as data packet-switching, so as to provide for existing

and new services” (6]. The CCITT defines ISDN as

A network evolved from the telephony Integrated
Digital Network (IDN) that provides end-to-end
digital connectivity to support a wide range of
services, Including volce and nonvolice services, to
which wusers have access by a limnited set of

standard multlipurpose user-network interfaces.

ISDN is motivated by the economics and flexibility
assoclated with mnultlservice applications. The evolution to
multiservice applications has 1led to the ISDN concept of a
family of standard customer (nterfaces which provide access

to the network, all of whlich operate In synchronous, full

-

o s ‘:.f'. QO ==

-

- e

PR

-
-~

g

ALy

- T

=

duplex mode (6],

The standard Interface concept is being vigorously addressed
by the CCITT. Study groups of the CCITT are working on the
development of Iinterfaces that will be compatible with
exlsting 64-kbps digital volce channels, and that will
incorporate signaling channels as well. An example of such
an lInterface, the first one developed as a CCITT
recommendation (3], s the 2B + D narrowband interface.
This conslists of two 64~kbps B channels for information
transfer, and a i16-kbps D channel for signaling and other
uses (flgure 2-1). The three channels, totalling 144-kbps of
transmission capability, are interleaved. A B channel could
be used for digital voice or circult switched data; the D
channel could be used for carrylng packet switched data as
well as control packets (3]. In particular, the D channel
may be used for signaling for the B channel, telemetry, and
low-speed data transport (11]. Wider band Iinterfaces, based
on an nB + D structure, with the D channel considered a
64-bkps channel, are also being developed as CCITT
recommendations. With n = 23, thls possible standard makes
the structure compatible with the 1.544-Mbps Tl standard; n
= 30 makes it compatible with the worldwide 2.048-Mbps
diglital transmisslon standard. Other Interface

recommendations are designed to handle even higher bandwidth

services such as video and high speed facsimile (3].

N R LN N A AN T P O A R R A O T X N O N O Y Y N TN TR IV U R TN UN U SV NV UV UN TV UW AT UV DUV MG 207 0T R G AR G A R
1

']
b
5 3
‘ 14 :
¢! |;
2 ¥
; y
’ ;
4 (]
B ‘5
| D B B X
‘ L1 | || '
R Signaling, Voice Framing !
X Data, Telemetry And '
‘ Data ¢
! 4
$ t
;' ¢
¢
! Flgure 2-1. Concept of Potential ISDN Franme. \

¢
i |
¥]
5
, $
'I' .
s' (]
! v
/ 9
by W
LN 1
" I1SON N
] k 'l
L

CIRCUIT
i SW[TCHED ;
"l q
Ly 'v
' \
3 180N PACKET s
2. SERVIN W & :
’ FPICE :
USER/NETWORR SIGNALING USER/NETWORK

_ INTERFACE INTERFACE

e
;)
N L
)
g X
K Figure 2-2. Example of ISDN Capabilities. 3
)‘ ~ ;
: :
8)
' "
4 L
! i
b
3

: , r ‘ - R ;
QL Lot RO K, O o S R T D D Iy A TP IO T 00 Ot WO TR O QLM OO0)

0o B e e e

- -

S s

-

e e e

oA d

ot >

= e e W

L)
L)
)
+
A

L RN A U U T UN T VR U N R N R AR VS AT RTI e 0 0.8 ¥ad Vel Cah Uk fad Pl

15
In the Bell Operating Companies (BOC) networks, initial ISDN
integration will be realized on the access portion of the
network. Figure 2-1 displays the concept of an ISDN
interface frame. And figure 2-2 represents the conceptual

view of ISDN capabilities [11].
2.2.3. Architecture

Irvin Dorros (13, 14] suggests the general local
architecture shown in figure 2-3. The key ISDN concepts are
that the customer will be supplied with a telecommunications
transport capaclity measured in maximum bit rate at a
standardized Interface. This bit stream capacity will be
provided by the network to a customer’s premise in what
Dorros calls a "digital plipe®. The customer will aggregate
the variable bit rate capacity needs of his terminals at a
control device that interfaces with this network pipe.
Ultimately, packet and clircult switching access will be

integrated and provided on the same pilpe.

As an architectural representation for the network ltself,
Mario Gerla [5] forsees 1SDNs evolving in three phases: In
phase I, the ISDN will conslist of two separate networks, one
for clrcuit-swlitched (CS) trafflc, and the other for
packet-switched (PS) traffic, and a single access interface
for both networks. In phase-II, CS and PS traffic will

share transmlisslon medla but willl wuse different swltchlng

.....

. , " A P A R p e e m e
AL LE I R TS ST T N N R G N R Pt S, A S A W S T

S N e -

.
\3

W o -,
Y, ARG,

Dad vad Yok tgh sot

B

ual tpn el Sat &

SYOON3IA
3Sve
viva

- e

3414 WVLIDIG
H10IMONVYEIL NN

AYOMLIN
QIHILIMS
21NJ8

NHOMLIN
13%Ivd

nviung
WYV

YIINID
ONIAYIS

oMIINNG) A.l“
|
|
{
m
/

v

/{\

34\ WLIDIY
HIOIMONYBILINW

o -
I e

!
|
|
!
|
|
[
|
|
|
|
_

¥310UANOD
HIWOLSND

X

SISINIY
YINOLSND

I8DN Local Access.

Figure 2-3,

PRI WAL

N NN P I A M S W IR WU TR R R AR AR AR AR A R A MM AV YR U o 42 8%0 8% 12 4% 8V 4% 8Ua" 8% aV."21,

17
facillitles. Finally. 1in phase III, transmission and
switching facilities will be shared by CS and PS traffic in

a fully hybrid integrated network.

Perhaps the most elaborate description of the evolving ISDN
archltecture 1Is contalned 1in "Bell’s Concept of the ISDN®
{15]1. Thls reference provides three separate Bell systenm
network capabilities, each of which can support one or
several ISDN applications. All of these capabilitles
provide switched, end-to-end digital, full-duplex data
connections over 2-wire loops. The first capability deals
with clircult swltching of 56-kbps. The second deals with
packet switching in a local area at speeds of wup to 8-kbps
and possibly higher, This second capability involves the
use of statistical multiplexers to concentrate many calls
onto a single 56-kbps line. The final capability deals with

long haul packet switching at speeds of 56-kbps.

An outline of current proposals for an early application of
optical fiber in the local network, and discussion of how
these proposals act as steppling stones toward the broadband

ISDN is found in [16].

¥ a0an Y, a¥a A%, B

TP

7 - v ~ - . i 5 FYVEVNAVEIVINUN RN AN AR ERMN
BN R T T N T N I N T I T O N T A TR Opl gt b gl pilcgl gty g7 &

18

X 2.2.4. Service Requirements and Network Capabillitles

-’

n x

ISDN planning must take into conslderation the wide range of

I
ot e e

customer service requirements that an ISDN might be required

to support. These customer needs Include (15] interactive

-

data, image processing, bulk data, audlo and video.

Further, standard ISDN user-network Interfaces must be

e .
TS o

responsive to these customer needs [(18]. The following
) sectlons glve some general characterizations of the
ot transmission bit rates of these customer needs. Other

important considerations include the burstiness of traffic,

A

%‘ the error rate requlred and session length. All of these
ﬁ% vary over a wide range depending upon the application.
; Figure 2-4 graphically summarizes some of these
& characteristics.

. Many telemetry type applications such as meter reading,

N energy management, and securlty, have very low average bit
ﬁ rates, less than 300-bps. Interactive data applications
- generally wuse terminals to access data bases, word
g processors, computers and other terminals. These
g‘ applicatlions lInclude inquiry/response and transactions which
: tend to have bit rates less than 4.8-kbps (15].

N

x Image applicatlons are characterized by the transmission of
s fixed 1images and include facsimile, graphics and slow-scan

¢ or freeze-frame TV, They can be handled with a blt rate of

19

[=}
=
o
(=)
w
73
~
%)
—
S
@
[+)
=
—
2 "o
(= —
—
>
< us K"
Z2 2
& aox
- —
8 ¥ v
K - L)
'k D= (=]
i @ U —
i w
R S
) © <«
o Wy PO
=
S
o> >
wng @
w = — Xag)
("4 Wl Q
= —
foy]
'}
d o~
[l (=]
—t
I o
—y
e =
4 v A L} _— T LJ 1] 11
~ v w < ™ o~ — —
w Q Q (=] Q Q Q Q
] — - - - — —t —
~<
v
] -
—_—
[- - =4

Figure 2-4. Characteristics: User Needs.

PR LA AL

DR TN PR P I PR A V) 3 RS AT ICTIN COW AN LIW W R-ASTWLNY N UW LN LU N T VI UL Vo Eab vu8 VoB valh ok So8 5.0 4.0 XA IR TN Y EREY TR UL

20

64-kbps or less [15].

Audio includes signals such as volce and music. In the U.S.,

voice has generally been encoded at 64-kbps for transmission

~
-

on the network. Methods do exist, however for transmisslion

of volce at speeds less than 64-~kbps with acceptable quality

3

W
o a4 &

e

for many applications [15].

Bulk data transfer encompasses appllcations such as the

i W o e
[Pl Y

transmission of large data files between computers. One

application 1Is the nightly transfer of bllling data from

o

large remote locations to a central host facility. Such

k)

48

§: applications can use speeds of up to 1.544-Mbps [151.

;'(

»

:h Full motlon video can be provided in a number of formats.
iy

f; For example, broadcast quality video requires about 4.5-MHz
5 as an analog signal or approximately 100~-Mbps as a digital
)i

5 signal. Of course signal compression techniques can reduce
‘l

ﬂ this considerably (10, 151].

W

‘I

S; The various customer needs just descrlbed can be generated
o

:: from a wide variety of customer types [17]1. These include
ﬁ the banking and airline industries, unlversitlies, electronic
i

?‘ publishing, electronlc suppport of catalog shopping,
E automated offices, and even private networks that serve the

N speciflic needs of single large-customers.

o PR n . +
O O O et R

21
Studles of the ISDN objectives have identified four general

categories of network-level functional entities that may be

needed (121]:

Transaction routing and control
Network management and operation
* "Add-on" characteristics (l.e. service options)

* Information processing

2.2.5. Evolution to an ISDN

Several authors express thelr own Interpretation of how ISDN
has and will continue to evolve (5, 10, 11, 12, 14, 15, 17,
19, 21). Contained in this section 1is an attempt to tle
these approaches together In a way to demonstrate that
although unlique Interpretatlions exlst, they all tend to
point in the same general direction. This section discusses
a global view of ISDN as key world-wide efforts are cited.

A recent |Issue of the Journal__on__Selected_ _Areas__in

Communications (20] contalns numerous articles by varlous

authors on how dlfferent ISDN system components will likely
be implemented. And finally, Appendix A contains further
details on the evolution to an ISDN, addressing the Bell
Operating Companies (BOCs), and speclflc subsets of the

global ISDN.

PRBRPE BRET PR Pl S IUT U LT LG LG IS ¥ RIS AT EIT LA LIS LIRS LRI AT LA U LR LA LR LA LU R T R TR aah ol Vel al Fah tob $ab €2l

22
ISDN evolution will not be unique (12, 14], since
transformation will vary depending on such factors as the
existing network, operating organization, regulatlon,
competition, geographical and economic environment, and

technology and interpretation of standards.

ISDN’s will be based on the concepts developed for telephone
Integrated Digital Networks (IDN’s), and may evolve by
progressively lncorporating additional functions and network
features, including those of other dedicated networks such
as circuit-switching and packet-switching for data, so as to

provide for existing and new services (6, 121].

Information users are looking to ISDN as a future
telecommunications service shopplng center (121. Shopping
centers vyield efficient, easy access, and economies of
scale, by bringing many services under one roof. The ISDN is
being designed to give wusers a uniform view of a wide

variety of applications.

Although cost-effectlve functionality, and not technology,
is the user’s primary concern (12], users reallze benefits
of an ISDN. They need timely, stable standards in order to
make cost-effectlive plans to tallor thelr network’s
evolutjon to their business demands. The CCITT layered

interface approaéh to ISDN standardization responds to the

user’s needs, since It permits terminal and network

PR ey

L . -

- o oy

- - wn e W

P X

-

e M Ry

)

R RSN SN RS M N N RN U N N NN G R R R NN T T T N R T NN

23
technologies to evolve independently. ISDN flexibility 1Is
achleved through setting digits in signaling protocol flelds
and not settlng voltages on a large number of lnterface

wires (121].

We now 1look at where we are In achieving the ISDN vision
[14]). General concensus within the Industry lIs that for
integrated services networks, voice will be dominant for a
long time to come and wlill be the factor which sets the pace
of a truly Iintegrated evolution. In the U.S., we have
surpassed the 1000 time division central office mark. In
addition, there are thousands of diglital Private Branch
Exchanges (PABX’s) of varlous sizes which connect 1into our

national communications network.

In transmission, there are nearly 100 million circuit miles
of T-carrier (T!, T2, etc), and over 5 million circuit miles
of digital radio In the U.S. There are approximately a
quarter of a nmillion 1loops employing dliglital subscriber
carriers. Lightwave 1Is also a fast emerging dlgital

tramsmission technology [14).

An important capabillity In an evolving ISDN 1is common
channel signaling. Over 25% of U.S. intertoll trunks are
now utilizing the world’s largest packet switched network -
the Common Chanhel Interoffice Signaling (CCIS) Network

(14). Thus in the U.8., we have been and will continue to

- - -,

r
MM

B e SN

KA

"

s e

"

A e

s e W4

SR Pl AN ST A Y LY RN Sipg A2 B p &) 47 MR UL M UM Y S U T NIRRT L oy O ™ Ot ol Soh dah 4.9 shii ' AS, ~ R

24
Introduce the transmlisslon, slgnaling, and switchlng parts

of the ISDN.

The TransCanada Telephone System is developing a fundamental
plan for an ISDN through 1990. By the late 1980’s, about 2
million Canadian 1lines are expected to be served from
digital central offices. Canada already has an extenslive
packet switched network called DATAPAC with interconnections

to other countrlies (141].

There can be 1little doubt about the commitment of France to
the digitization of {ts network. The French PT&T was the
first to commit 1its future to digital switching and
transmission. France’s TRANSPAC data network is in operation

and 1s interconnected to Euronet (141,

In Great Britain, the Post O0ffice 1Is planning an ISDN,
centered around System X and a natlionwide 1llightwave network.
West Germany, Japan, Italy, and Sweden are all proceeding
towards digital switching and transmission. National data
networks, which are lnterconnected Into Euronet, now exlist
in the major European countries. Videotex and Teletex are

also emerging in Europe, Japan, Caunada, and the U.S. (14]).

This quick and Incomplete summary of the status of the ISDN

evolution around the world gilves the flavor of where we are

at present. The accomplishments which have been mentioned

PR

- e
. PRy

' e o

‘o

-

IR _ XX FLE XN

25
involve the production and deployment of some parts of the
ISDN. Each of these has been deployed largely because it was
the economlic cholce for a specific application, such as a
digital local switch, a digital carrier system, or even a
digital service network. The comblned capital and
operational savings avalilable through digital switching and
transmission should continue to expand the deployment of
digital parts even without an ISDN {141, See Appendix A for

addlt;onal detalls on evolutlion to an ISDN.
2.2.6. ISDN Applicabillity to the NASA Space Statlion

As Indicated earller, the goal of the ISDN {s to provide a
versatile, multiservice network with standard customer
interfaces. ISDN will continue to evolve from the emerging
public digital network, and thus should be fairly well
defined, and also developed by the 1990’s. The fact that
most authoritlies 1{in the communications and computer flelds
expect the ISDN to come into its own between now and 1990 ls
of particular slignificance to planners of the NASA Space

Station.

It now is clear that an ISDN type of structure aboard the
Space Statlion |s advantageous for several reasons. First,
the evolving dlgital technology upon which the ISDN is based
will be well pro?en. and accepted by the time the Space

Station 1is to become operational. This allows NASA to take

L3 L YR PO BN

’
]
*
(]

L L O e -

i ikl

-_w

wh A‘I‘.’l‘;!‘u"“nl 18 ah" o O " .ali 'a-, ""ﬂ'.\-'(- -(‘ . .l. ‘ \ % ’ N e Eﬁﬁﬁh’j

DAt gt AN e ek Tl g A Rt p® Ya 8) AV an byl et) e Sl v iR tal el VAl at tal vad) vel ead Vag b nad ool Vel o

26
advantage of existing state of the art technology.
Secondly, the amultiservice, versatile standard interface
requirements of the ISDN type network willl accommodate the
voice, data, and video needs of the station quite well. This
is especlally true |If predicted advances in fiber optical
technology come to pass allowing for (perceived) unlimited
channel capaclity. The station’s requirements for quick
responsiveness and fast turnaround on critical computer
computations and processing, dictate very high channel
capacity. Also, by designing and installing an ISDN type
commnunications network, the station will not have to expend
funds and manhours in determining how best to interface the
Space Station with the worldwide ISDN should a clear need to
do so exist. The technology will already exist and thus
NASA can concentrate on how best to implement the technolcgy
so as to provide most efficient and effectlive service to the
station. And finally, the anticipated size of the station lis
such that an lIntegratlon of hardware and software functlons
is essential 1if all needs are to be met satisfactorily
within the 150 to 200 feet area. The concept of an ISDN

allows for the most efficlent use of a very small work area.

In summary, the massive amounts of video, voice and bulk
data requlrements of the statlon can best be met by
installing a fast <(which Implies fiber optics technology),

highly =modularized <(which Iiamplies ease of expansion),

integrated communications network. These requlirements are

DL XX

e,

I U S T D T W T T I A O O AR T T N K T T TR NN TN UNUY UV UV UV U AU R AU W L DS UA SOTAT RS BT Y IO

27

preclsely what the ISDN Is all about whether viewed In the

context of a local or long-haul network.

' 2.3. Why spiral Over Traditional Topologles?

-
]

- e - -

PR)

Our spiral topology 1is flexible IIn that it {s easily

¥ e
-

expanded to any desired number of modules. Although nodes

K are added four at a time (as a full module), they need not
be activated locally wuntil needed; the network stlill
Y functions properly. The expansion of a spliral configuration

requires no restructuring of a complex routing scheme, since

T,

.
- e B &

there Is none. There 1s no need for each node to malintaln

" -

routing tables or connectivity matrices for the entire, or

-
-

N partial network. Messages move automatically from node to
\ node based on the splral and dlrectlion flags lInlitlallzed at

Y the originating node. Also, node fallures have minimal

- impact on operational nodes since messages are automatically
*I‘
Q routed around falled nodes by the directly connected

operational node. Further, with the spiral topology, severe

ﬁ- network degradation due to multiple node and module fallures
% does n.t preclude good nodes from communicating with each
& other. As long as a path exlists between any two nodes, no
? matter the length, the self-routing algorithm will seek out
% this path and deliver the message to Its destlination.

i

; Finally, one najo} drawback t6 using fiber optics in local

) area networks 1s the relatively high cost (in time delay and

)
e y - A A T . ~ P o R SR AN N .
» W1 R Ot 1 TY e W RSN % A%, 0%, 4 RT3 ST S Ay VTP, VAT P s 0 AL R PR S TRV

28

money) assoclated with optical to electrical and electrical
to optlcal conversion of messages for intermediate storage.
In particular, the high speed of fiber communication In
store and forward environments Is somewhat negated by the
slower process of converting the message for storage while
elther a routing decislon is made, or the message awalts the
outgoing transmission link. Conversion to electrical format
for temporary storage is necessary due to a lack of cost
effective optical memory technology for message storage.
With spiral, since messages are routed on-the-fly, there
will be no need to store messages while a routing decision
1s belng made. Only busy links will cause the message to be
stored. Thus, the balance between message and circuit
switching should be more easily attained. This feature alone
opens numerous new opportunities for fiber optics use in
local area network environments, and other environments

where storing and forwarding of messages Is an integral part

of transmission.

..-‘.--‘_.1-._v--q-_--i-yv'v-“
N (} ﬂ.'l:' :‘} 2 -’?J‘:’ = .P}‘.r,"a'?".n?.m\j "ql,‘_r\a"‘_:-_—_n“_n'»"_‘-":-\

T Ey av e L et a8 e e e R el e w28 avh ath 2t et h at8 a'8 a8 atd &%, L T R N R T T T R R T A P T T T R STy CIOR

29 ;

3. REVIEW OF TRADITIONAL TOPOLOGIES

L o e o

4 3.1. Introduction

By W o By~

1' Four traditional computer network topologies have emerged

- - -

over the years to form the basis for network structures: 1)
bus; 2) ring; 3) star; and 4) mesh. While each has proven
: advantages for the environments for which they were :
% designed, each also has distinct dlisadvantages centered
\ around type and volume of traffic, delivery speed
requirements, number of users (connected nodes), and
geographica”™ placement of these users. Further, given that

one of these topologies is selected for a new network, users)

PR A

g are then expected to wuse one of the few access schemes
i s
5 germane to that topology In order to lncrease chances of the A
’ 1
g network performing as originally intended. A
N %
d "
f, 3.2. Bus Topology L
s 0
Al !
! The bus topology (figure 3-1) is good for bursty type
& b,
% traffic whose messages are relatlively short. Although thls

scheme can serve a large number of users, conflicts
" resulting from attempts to transmit simultaneously by two or
4
. ¢
L more users (called colllislons), are inevitable. The !
b "
5‘ probability of collisions, and taking positive steps to :

minimize thenm, résults in a fairly low theoretical maximum "

message throughput threshold. Access to a bus topology ls

TR N

LT T T T O T T AT s D I I W T P o W M T ot o S WO W "R, W S T B R R P T o

[TI LI U T R DR R LT ST YT CRTURU R R R R R e R A T A Y N N T T I O T T O T O T OCXR

-

P

v
30 3
*
(3
usually via some contentlon scheme, where users compete with b
1§
each other for access to the transmission channel.
]
3
T ‘)
i A
4
i
H %
)
j
; BROADCAST CHANNEL "
¥ l?
3 t
! t
; BUS '
N e o o INTERFACE !
UNITS ¥
{BIUs)
USER y
: DEVICES 1
& !
) \
B "
k!
1 Flgure 3-1. Broadcast Bus Topology.

-
o o)

KX

X 3
+ 3.3. Ring Topology N
‘i +
) 4
4 In ring topologies (figure 3-2), all users are connected in X
i.

:; a circular fashlon, and a message |s passed around the rling N

3 from one user to the next, until its final destination node -

\ is reached. There 1is a maximum, theoretical 1limit to the }

«
-

2
e e S =

number of bits that can appear on a ring at any one tinme,

)

U

¥ and throughput and delay are both heavily influenced by the

' ring size. Further, some central controller usually manages :
¥ "
! the ring to Iinsure proper operatlon. In thls environment, y
; ::
¥ o
t '
K 0
“"“'.“""' ", ..0".'9«.. !‘. Q-"'.‘.t".' b i".l."0‘-"!"':’!’o'l.i‘l.-‘t'- (AL .‘n‘l'- o, "p {n/th l.-.l.a.l.'lz .‘ﬂ"’. Q.' .n) 0.. ' ¢ s .'g)) U i- 0’9‘ l. '.) O UX -0' ! ,‘:

A

PRl Ry P

R

- o

T XN X

PR LY XX

e

T . e - -

ny
L

T N R A S O L S L S O R O T TR I Y N O G 3 S R A TG TR X X AR Ty

31

contention, reservation, or token passing are typlcal

schemes that determine who gets to send next.

RING
INTERFACE
UNITS
{RIUs)

USER
DEVICES

Flgure 3-2. Ring Topology.

3.4. Star Topology

The star (figure 3-3) topology relies heavily on a central
controller that acts as a “master” to the connected "slave”
nodes. Usually pollling i{s the access scheme used here. The
major drawback to the star topology Is that of failure of
the master controller. If the master falls, then the slaves
become i{soclated orphans. Although expanding a star is a bit
more stralght . forward than expéndlng a ring, every added

node means Increased average network delay for each, since a

3;
‘-!.‘n‘.’n. PAJOLOOI OO O .- * 'ooli. 8 ‘ o . h"' ’ h 0.“0 X | o Tgtined? .l M M&M‘:&E

MESA A

2N TN P T

e Yt et ted vl tY et el < gl gy Cal Say vad Gal) Yol il tah Tl #a8 Kod U S RS R R T O WO RO R R ORI OO KR X

>
-
*
.
>
-

2

.G
.l
;
1)
32 ¥
l;
{
greater number of nodes compete for attention. ﬁ
l 4
¢ $
s
" .;
) Al
; :
, !
% "i
¥
1 BIUs
SHORT BUS
; :
X ¥
: HUB
\ USER 3
: OEVICES g
¥ ;
.“ ‘
:l
4 ¢
5 Figure 3-3, Star Topology. E
" ;
1
N 4
? {
i 3.5. Fully Connected Mesh Topology s
; ;
: Finally, the fully connected mesh (figure 3-4) topology is &
o the most flexible of the traditional topologles since nodes 4

typlcally operate at the same precedence level, and falled

nodes can be bypassed via alternate routing. Thus, the mesh

3 offers the best opportunity over the other three to reduce ;
: network delay and Increase throughput for varlious numbers of

% nodes. However, if more than a handful of nodes are fully J
S connected, complex network routlhg and management algorithus A
% are needed for successful operation. Also, most mesh type "
: ¢
N :

e
o

DO MO OQ A OO OG OO e OO XN Mo WAL iy ' -n\. L e) -.l'. A, V| "{ﬁ&ﬁ"t{'{;ﬁuﬂ" ‘:H:l...\" Ll\ ~":'1}3."‘&\ 'V.s\rnriﬁ'_} }Z}Af;{;:;.i';']

33

networks operate In a store and forward mode, where an
entire message |Is received and stored at an lintermediate
node before |t 1is forwarded to the. next node In the
message’s route path. Therefore, the inherent increased
cost in dollars and complexity over the other three
tradltional topologles, renders the mesh unacceptable to
several wusers who otherwise prefer, and may indeed demand,
the speed and flexiblility of the mesh. This is especially

true In local area network environments,

o‘e

Figure 3-4. Fully Connected Mesh Topology.

34
4. TIME DELAY FORMULAS FOR LAN TOPOLOGIES

4.1. Introduction

This chapter consolldates the delay formulas for the most
popular access protocols used in a Local Area Network (LAN)
environment. Contained herein are discussions and
comparatlve results for Carrier Sense Multiple Access with
Collision Detection (CSMA/CD), Token Bus and Ring, Slotted
Ring, and Ordered Access Bus protocols. These protocols are

used In one of the network topologles of fligures 3~-1 to 3-4.

Computation and analysis of the variance of the waiting time
for token rings is found in [(22]. Readers interested in the
end-to-end performance modeling of LAN’s are referred to

(231 and (241.

4.2, Carrier Sense Multiple-Access with Collision Detectlion

(CSMA/CD)

4.2.1. Introduction

The delay formula for CSMA/CD presented In thls sectlion lIs
. that developed by Werner Bux (251, and altered algebraically
by Schwartz [26i. It 1is very- close to Simon Lam’s result

(271. The primary difference between the Bux and Lam delay

WP OASA A TR, IO R TS LR GRS CR ER VAR (et

R R W N S T W W N S T W W e O S S O S S P T W O T AT W U O W O T WP W W A T O WO WA, TR U

35

: formulas, and those developed by Leonard Klelnrock and Fouad
Tobagi in [28] is as follows. Bux and Lam assume that in
the local networking environment, collisions in the channel
are detected and that users involved 1in a collision abort
their transmissions immediately upon detection. Mechanisms

for detecting collisions and aborting collided transmissions

ol o a e oW

have been implemented in several multipoint cable networks
[29, 30, 31]1. However, it appears to be much more difficult
to Implement a “"colllsion abort® capabillty in the radlo

' environment of Kleinrock and Tobagi’s work [27].

4.2.2. Model Assumptions

PR SR

Like the p-persistent protocol in (28], local network users

are assumed to be time synchronized so that following each

v ek o e

successful transmission, the <channel 1is slotted in time.
: Users can start transmission only at the beginning of a time
slot. T represents the channel propagation delay, and the
! minimum slot size 1s 27. To enhance the validity of his
comparisons of various access protocoels in a continuous,

nonslotted environment, Bux heuristically modifles Lam’s

PR)

formula in [27] by reducing the mean delay by T (25]. Figure

4-1 f{llustrates Bux’s CSMA/CD scheme. His result presented

> -

here defines the mean transfer time T as the queuelng and
access delay at the sender, the transmisslion time of the
packet, and the propagation delay. The protocol is defined

by two possible courses of action for ready users:

¥
¥
!

O o O O T N AT e TR O TR R DA LR o RS OO0 0 S YR KO S G AR i Sy

36
1>. Following a successful transmission, each ready user

transmits with probability 1.

2). Upon detection of a collision, each ready user uses an
adaptive algorithm for selecting its retransmission

probablillity during the next slot.

RANDOM RETRANSMISSION INTERVAL

COLLISION COLLISION
DETECTION & ENFORCEMENT

STATION A

TRANSMISSION ABORTED SUCCESSFUL
TRANSMISSION

STATION B ———————
COLLISION ™~ COLLISION

DETECTION ENFORCEMENT TIME
—

RANDOM RETRANSMISSION INTERVAL

Figure 4-1. CSMA/CD Bus: Example of Operation.

R R i

- e .

[R

L i g

S e e e e

LI O R P B O I O T TR R TR P S e T W T W L WS St AU R I NSV] B

37
The model assumes errors due to random noise are
insignificant relative to errors due to collision, and can
be neglected. The trafflic source Is an infinite population
of users who <collectively form an independent Poisson
process wlth an aggregate mean message generation rate of \
messages per second. It also assumes transmission times of
each message s an lIndependently distributed random
variable. Comparison of delay versus throughput results are

shown in flgure 4-2, The delay formula is:

ME(Tp21 + (de + 2)TE[Tpl + 572 + 4e(2e - 1)72)

T = ecmaceiea- R e

2{(1 = X(E[Tp] + T 4+ 2ev))

+ ElTpl + 27e + -
2
(1 - e=2MTy¢2/\ + 27/e - 671)

2(Fp*(M)e~rT1/e - 1 + e72T)

where:

ElTpl = mean service time,

E[szl = second moment of service time,
A = aggregate arrival rate,
T = propagation delay, and

Fp*(\) = Laplace Transform of the

probablllity density for Tp.

~-

The fourth candidate for local area subnet use presented by

Bux is also Included In flgure 4-2 for comparlson. Section

B 3T AT N
" L) al » " '

¢
i
]

Y

-

g alind 2 9

w8
.

P P~y

-

[Feleten o

VLR Rt gt g 470,01 2% o 9

N 38
g 4.6 contains a comparable dlscussion of this ordered access

scheme (multilevel multiple-access (MLMA)), and additional

detalls can be found in (25].

2
A

ot

8
oy

-
oy

2
Kh

XX s R O R R O N o SN o Y YN S Al i

0

39

10-M0/¢ Transmission
Rate

2-km Cable Length
10077 50 stations

Rings 1-81t Latency
Per Station

Exponentially.
Distributed
Packet Lengths
(Mean: 1000 Bies)

24-81t Header

10 =

Mean Transfer Time/Mean Packet-Transmission Time

"% —CSMA Collision Detection Bus

’ ! 7 T —)
0 0.2 0.4 0.6 0.8 0.10
Throughput Rate/Transmission Rate

Figure 4-2. Delay~Throughput Performance of Various

Protocols.

-

&

4.3. Token Ring

4.3.1. Introduction

The formula presented in this sectlion 1Is also due to Bux
(25]. Hls result is similar to formula (1), page 132 of the

work by DeMoraes and Rubin [32].

4.3.2. Model Assumptions

In a token ring, access to the transmission channel is
controlled by passing a permisslion token around the ring.
The model assumes a population of S terminals. Messages
arrive at termlnals 1in accordance with a Polsson process
with aggregate rate \. Here 7 represents the round-trip
delay in the ring, including possible delays of the signals
caused withln each statlon. In the comparatlve results, T

was assumed to be 5 microsec per kllometer of cable length.

With respect to the order of service, two unlique policies
are clited by Bux: 1) A queue is served untll it is empty
("exhaustive service®"); and 2) Only a limited number of
packets (e.g. one) s served per access possibllity
(*non~exhaustive service"). Although, in principle,
performance différences exist-between these policies (331,

Bux contends that in a local network, these dlfferences are

o

RIS WP W W AR U W WU T S U W T U U W T WU TR TUR R TOT, IO O R oY oy O TR PR R T Yoe YT s

NSRRI

41
small if traffic 1s uniformly distributed among stations. In
the model for which the formula applies, a new free token
was generated Immedlately after the last bit of a packet had
left the source. This implies the posslibility for multiple
tokens on the ring. At most one of them however, is in the
free state. From reliablility and recovery points of view, it
may be desirable to have no more than one token at a time on
the ring. This can be done in two ways (251, 1) The sender
Issues a new token after he has completely removed his
entire packet ("single-packet” operation). In Bux’s model,
this can be taken into account by prolonging the packet
service time Tp by the total ring round-trip delayr. 2) A
more efficient soluticn is that the sender does not issue a
new token before he has received his own token back
("single-token"” operation). Thlis rule becomes effective in
cases when a packet is shorter than the ring latency. In
the performance model, this can be described by setting Tp
equal to 7 for all packets shorter than the ring latency.
Comparatlve results are presented 1in fligure 4-2, and the

formula for the mean delay is:

pEITp2] T(1 - p/S)

number of-connected stations and

10))
i

bl
]

NE(Tp].

«

(LT

B LA

BN OGN A% L0 LD P g ' x X v ;
NS & P S LA I ML O Lot Ll o O MO R T 5 a2, 0 e O R T it St

Iy
U
£
't
a‘

D
4
i]

42

4.4. Token Bus \

w .

¢ In this access scheme, the token controls access to the
D shared bus. As in the token ring, the terminal holding the
token has momentary control of the medium. In the bus
configuration, however, the terminals are coannected parallel
& to the medium. Thus once a terminal transmits the token, its]
signal is received by all terminals. Unlike the ring, for
" token bus operatlion, termlnal (i) does not have to be y
i physically adjacent to terminal (i+l1) in order to transmit

in that sequence. Hence, a token bus behaves llke a loglical

N ring.

i Performance results cited above for token ring are 1
approprliate for the token bus case, If 1t operates as a
' logical ring. However, now the propagation delay represents J

the total latency for a round-trip around the logical ring.

P
-

This value may be larger than for the token rlng slnce we d

el

now make the delay from one end of the bus to the other, ¢
o (worst case) plus the time for a terminal interface device ;
to process the slignal. DeMoraes and Rubin’s formulas (1) and

(12) 1in (32])] for token ring and token bus respectively, are

R ldentical to Bux’s result except for notation. Figures 4-2, \
Iy '
A

5 4-3, and 4-4 contaln comparative results for token bus and)
W, <
X token ring. The result for a token bus that behaves like a !
" logical ring s repeated from the previous section. That

%

3
'
delay formula ls: E

' AN T . o im
AT R } N, NI IRARN, AR

(TR R AR T S LT RS AT T WATIVL W Y SR WL TSR AR EE IR B R 6B ek 8T 0o ek xab ¥, 3 al B) Db mal tah sgh Bp8 € val ual cat BB va¥ Vol (gl oub <y

B

.t .

43

N '

[} pE[Tp) 1 - p/S) T

; T = eecemmmemmmm— + E(Tp) + =====--- -4 = !

4 2¢1 - p)IEI(Tp] 2¢1 - p) 2 }

3 N

. where: s

R S = number of connected stations, "

']

’:' p = AE[Tpl, and ‘

: T = round-trip propagation delay.

" i

0 '

| {
(]

8 .

R

\

.

. .

Y

) {

Y ;

_ .
h
0

- Lol

P &
-

h)
s
;
A)
N ,
||
) \
)
o ’
)
'
ity
» 3
”]
[} .
' N
, .
b
y
\"
o,
) {
n L]
i
.‘ {
’. y

B B = s A A s T ey L A A e,y N T T T TR T AT T A AT T T TR TN S R AT

™

M e

- . - - PP,

PR N

LR XN

SN

RN RA)

"

-‘\ ()

]I XS X N

0,8° 2.0 0.0 40" “4.'0.R" "5 050 2 80 e U a8 8¢ "ols Al aVh’at) ¥R 9 - ' AR cali=ata ata ‘el
44
g Number of Terminals (M) « 100
—- 100 Transmission Rate (C) =} Mbs
S _1 Cable Length (t) = } km
o Exponentially-Distrubted Message
v Date Fields With Mean E(Nd) » 1000 Bits .
g Header Fleld (N.) » 48 Bits
s Ring Latency/Terminal (Lr) =] 8it
.-': Bus Latency/Termina) “‘b) s 2 Bits
s
3
7]
(<)
[\ .
| 99
b 10 —
<<
~
> ,/
©< 0
8 Tok |
oken .
g Bus "\
o
w o e
v e [
2 " Token
@ Ring
o
[\-]
|
-3
<
l R | L4 1 L
0.00 0.20 0.40 0.60 0.80 1.00
Normalized Throughput
Figure 4-3. Average Message Delay vs. Throughput for
Token Bus and Token Ring Under Balanced Traffic
Cxj=x3 1 =1,2,3,...M) and Gated Service (10Mbps).
R T N o VR A 0 P g o s A ey et P T N B Ty

BTN RS S 5
K, o ¥

‘u ¥ _W_m

R R

e~ - e

-

- T

K R WAL

N N O E O R T T I

Average Message Delay/Average Data-Transmission Time

Figure 4-4.

Bus and Token Ring Under Balanced Traffic and Gated

10 —

¢ e o ARE
Cy.s gha g R T 0 440 Bk fet ie Bat wat dyt ol

45

Number of Terminals (M) « 100
Transmission Rate (C) » S Mbs

100 -1 Cadble Length (t) = | am

Exponentislly-Distrubted Message
Date Flelds With Mean E(Nd) * 1000 8its

Header Field (Nh) v 48 Bits
Ring Latency/Terminal (L) « | Bit
Bus Latency/Terminal (Lb) = 2 Bits

Bus ¢___Token
Ring

L 1

1 T T
0.00 0.20 0.40 0.60 0.80 1.00
Normalized Throughput

Average Message Delay vs. Throughput for Token

Service (SMbps).

"

-

-

- -

o g g ¢ e N R e e

bo o e

- - .. -

- W

46

4.5. Slotted Ring

4.5.1. Introduction

In the type of slotted ring studied by Bux (25], a constant
number of fixed-length slots continuously circulate around
the ring. A full/empty indicator in the slot header 1is used
to signal the state of a slot. Any ready statlon occupies
the flrst empty slot by setting the full/empty Indlcator to
"full”, and places its data into the slot. When the sender
receives back the occupied slot, 1t changes the indicator
back to "empty". Several slotted ring mnodels are developed

and evaluated In [24].

4.5.2, Model Assumptions

Usually, the slots 1in local rings are short, which means
that a packet or message has to be transmitted using several
slots. Packets queued at a station are served in sequence
for a short time quantum At, which corresponds to the slot
length. On the average, packets are usually at least ten
times 1longer that the slot. Bux further adequately
justifies in (25] key assumptions that led to the results
presented here. A most critical one 1is that the ring
bandwidth can be fully utilized. This means he assumes for
simplicity that ‘the following relation holds among ring

latency 1, transmission rate v, slot length Lj and Ly

WS AN WA TR U U YR W W VU T U I U U VU VRO U U N M N R N VL MG I WU R R T s S T e U e o e

-
-’

[

i "t

T e
P ey -

‘J'.,'.. "'l) l'll.n “! l ‘t. X ‘t#’.“l“' ".. l 'I ., ' ‘0. | A\‘Q.l'o LAY (3 n‘\‘r‘l‘o .‘.l'. A - o 5% 0.%,! M -m‘t;ﬁﬁ\ﬁﬂﬁ;ﬁ*& b& " ‘

R LR TN AR LA PR SEON Fu U FRICIATR | LR AP TR P A T e S AR R A A AN AR A AN T R T T Y I I I T Y Y IR TS NN Y YR TR TN DV Oy T

47 i

(length of header and data), and the number of slots o:
Tv = o(Lp + Ld).

Thus Bux assumes that the ring latency-times transmission X

rate equals number of slots times slot length. X

Comparative results are In figure 4-2, The simple expression '

for the mean delay ls:

2 T
T = ===~ E(Tp] + -. \
1 -p 2 '
¢
"
8
9 4.6. Ordered Access Bus

) 4.6.1. Introduction ,

The model descrlbed here for the ordered access bus approach
KX is again due to Bux [(25], and applicable in a star

) configuration since the star is known to have a short, fast

-
. -
T -

bus to which users elther contend for, or are polled to galn

y
g access. Information transmission occurs in variable-length
)
ﬁ frames. A controller provides start flags at appropriate i
ty

time Intervals which signal the beglnning of a frame. The
sy 4
]
Iﬁ frame is divided into a request slot and an arbitrary number)
) {
W
% of packets. In the version of multilevel multiple-access }
4

(MLMA) analyzed In (25], every statlon attached to the bus
- -
& owns one bit within the request slot. By setting its
L.:
A
o
kS
0%

S
K DANDOOTN DU AR RICAR AR NARA l.

o Y) v ! D - (]
DL O A AT O SR M i U)

a? $0

(P N s o’_h ,'-"'-‘!.c"“.. c' .I o.?' o X M M) !'J";.!.l .h"'t'. l .'..I \ !'l’, " ,

I R O W O I R A Y Y Y A O XY O R X o I I YT T p e ol 68 ool

48
a private blt, a station Indicates that it wants to transmit a
packet within this frame. At the end of the request cycle,

all stations know whlich of the statlons will make use of

B

this frame. The transmission sequence s given by a

priority assignment known to all statlons.

. -
- T T,

4.6.2. Model Assumptions

e 3

The bus 1s modeled as a single-server facility. Newly

generated packets arriving during the current frame must

}

! walt until the new frame starts for transmission. To ensure

that all stations know the entrlies made In the request slot,

-

the scheduling time Tg may have to be significantly longer
than the pure transmission time of the request slot. In

Bux’s verslion, Tg equals twice the time needed to transmlit S

e

bits plus the propagation delay 7. The underlying assumption
: of his model 1Is that the distance between two stations
. transmitting in succession 1s uniformly dlstributed between
zero and the maximum bus length. The appendix of [25])

contains the derivation of the mean transfer time T, and

g comparative results are at figure 4-2. The delay formula is:
§

;;‘

! p’ (ELTp21 + TE(Tp) + 72/3) .

L T = —=em=-ie—-e- e + ElTpl + -

e 2¢1 = p’)(E(Tp] + 7/2} 2

l' (3 - p)) Ts~

3 4 mmmeecee -a-

; (1 = p’) 2

[
Voha0 a0 VAT V)Y a'. Y Y ‘- RO l‘u!'.' "- "F iﬁ;‘iﬁ%ﬁ&iﬁﬂiﬁﬁmﬁﬁﬁvZ\‘.'.\“.'.w-‘h‘iwll\\'3

........

saty tak oal *al CAU TRY PRV TSV RV EFS JEE ST IRl ettt

where:

p’ ME[Tpl + 7/2}, and

Ts

mean scheduling time.

4.7. Comments on the Star Configuration Access Methods

The star configuration may be implemented using various
access schemes. The fact that the star configuration exists
in a network may be more of a consequence of the access
protocol rather than explicit star design. For example, the
classic polling of attached terminals may be accomplished in
a loglcal “"star®™ arrangement with the host/polling computer
as the hub. Terminal response times and delay formulas for

polling may be found in {34] and [35], for example.

As indicateqd earller, the ordered access configuration MLMA
may be applied to the short-bus (star) topology of figure
3=-3. Delay calculatlions can be done by usling the equation

presented In section 4.6, for the Ordered Access Bus.

A detalled study of the star topology addressing dlfferent

access protocols with emphasis on network performance, was

conducted by Kamal and reported in (36].

N
]
]
)
)
\

Finally, Anthony Acampora, C. D. Tsao, and M. Hluchyj in
(371 and [38) discuss a new local area network using a

centralized bus. Although expliclt delay formulatlions were

- e e

-

R

“w

|

- - -

.
o o

v I]

PR N

i
)
)

KRS LN N IR FA NG RN L RN R W T R P R o O Rt et B R0 .00 8 e e

50
not included 1in their articles, the intent of thelr
technology <(based on DATAKIT packet switching [39]) is to
combline the advantages of bus, ring and star architectures,

avoiding the disadvantages of each.

4.8. Effect of Propagation Delay and Transmission Rate on

Performance

In analyzing local network performance, according to William
Stélllngs (401, the two most useful parameters are the data
rate (R), of the medlum, and the average slignal propagation
delay (D), between stations on the network. In fact, it |is
the product R x D that 1s the single most important
parameter for determining the performance of a local
network. (The data rate times the delay product equals the
length of the transmission medium in bits.)> The length of
the medium in blts compared to the length of the typlcal

packet is usually denoted by a:

a = (R x D)/L = Propagatlion time/Transmission time.

The maximum possible wutilization of a network can be
expressed as the ratio of total throughput of the system to

the capacity or the bandwidth:

~

-
e .

e

[K L LI Y

S

Lol L A

> 5 W _v. . m_*_ .

-‘-‘

P

»

» v .)
OO / .ﬁmﬂ-tn L TR PN - - LR ORI Ty A A :) - . e e
OO0 I e e I N N e e A e N A M et A o

AN T A T T Y T N O N I ORI BNE R A A TN A R N T AT AN X A ™. U UOWY

51

(=
]

throughput /R

(L/(propagation + transmission time))/R

Py
n

(L/<D + L/R)I/R

b 1/¢1 + a)

Thus we can clearly see that a determines an upper bound on

the utllization of a local network, regardless of the medium

R co s
N I

access protocol used. In particular, Stallings’ throughput
3 results for various protocol access methods are summarized

? below as (40]:

g Token_Ring_and_Token Bus

5 S = 1/(1 + a/N}, a <1

3 S = 1/(aCl + 1/}, a > 1

é N = number of stations.
9 CSMA/CD

'y

S =1/(1 + 2a(l - A)/A},

A A

A = Probability that exactly one station

transmits in a slot.

L w e e
-t e -

So In terms of network performance at high speeds (such as

those possible via optical flber technology), the limiting

h
f value s reached as a result of adjusting to ensure the
)
K acceptable value of a. Since a = RxD/L, to keep it constant,
g if the rate 1Is to lncrease, the propagation delay D must be
\
; decreased (shorten the medlium or use a “"better®" physical
Ay
Y medlum), or the packet length L must increase. Increasing L
B could 1lead to greater ineffictencies 1f doing so results in
|
#|

a large number of partlally fllled packets (40]).

e

-

- -
P

AR C I

¥

I R R R A N A 3 NN S SR S S R NN T

R PRIV NI SN L P TP G W WU LI WU R Y WU U WL XU HENUNUN Y R L Y RU WA RURU AR R K K WK 3 M XU Wi WU L AU W RN UN WL

52

T R

Figure 4-5 depicts the relatlionship of throughput versus
offered load as a function of a, independent of access
protocol. In [41], Bart Stucks develops expressions for the)
maximum mean throughput rates for various LAN access
schemes. Figure 4-6 compéres delay versus throughput for
pelling and CSMA/CD given various values of a [27). Figure

4-7 shows normalized throughput as a function of a for

- B N e o |

various numbers of stations (N)., And finally, figure 4-8

shows simulation results for maximum potential data rates

[ar =gy

for the most popular LAN protocols [40}.

T ..

1.0- 380 s
C.9F : a=0.1 :

0.5

-~
g. az=1l 1

=

S
g ‘
£ ¥
[gad v
. .f
0.1- a=10 *
0 ¥ G t } 1 X

0.1 0.5 0.9 1.0

Offered Load

My Ry Ay

Figure 4-5. Throughput vs. Offered Load.

T T R e R T T I RO IR R U U'W U W UW W US U W LPw WA ~ 7oy ral ied 4, o e K7 TR AL

100

Polling
a=0.05, ¥=100 __.

-
-

SIS SRR AR

== "M
a=0.1

.d
o
T
]

\

Ty 1 7 I‘Yil

Polling
a=0.05, #=10 _

Normalized Mean Delay
wn

K 0 0.2 0.4 0.6
Throughput

Figure 4-6. Mean Delay vs. Throughput: Polling and CSMA/CD.

iy, Token, ¥ = |

Bt
5.8 .
% 1.0 / Token,# = 10

[‘. \ L

CSMA/CD, B =2

Throughput

. -
f-“..o.o‘ o

£2

e, J.

3 0.01 0.1 1.0 10 100 1000

Figure 4-7. Throughput as a Function of a for Token Passing

and CSMA/CD.

4
)
[y
L)

N
K)
o
e
LY

at

[.
0 v ; - I3 Y W R ~ h 'y Y 1% q L] "
IO A O O O DD A DA AT DN e Qe O A i A O OO U Ot o

I N Y F R VI TR R TIPS U AP WO W R SN N RN R A NN RARNKY SO REANRR AU T U Y N R AR AT R AN AR "N

=

240
‘K O = Token Ring y- 240 O = Token Ring
% 200} o = foken Bus o O * Token Bus .
: & = CSMA/CD Bus /o —200f © " CSMA/CD Bus
' E 160 %
2 =160}
‘ = bt
; o 120 s 3
i e - 1201 .
] - 80 3 '_
4 E g 8or ;
I <)
40 a0l
;:: 0 A — — e A o A e e
» 0.0 3.0 8.0 12.0 16.0 20.0 24.0 0.0 4.0 8.0 12.0 16.0 20.0 24.0 :
v ;
¥ Date Rate (MBPS) Date Rate (MBPS)
o
] (R) 2000 Bits Per Packet, 100 Stations (B) SO0 Bits Per Packet, 100 Stations
Active OQut of {00 Stations Total Active Qut of 100 Stations Total
Ji ¢
Y
R
i
Y
':‘ 240 :
n ! Q = Token Ring 201 . Token Ring i
o = Tok L 3
y 200 N oken Bus 2001 [o] Token Bus
" : & » CSMA/CD Bus - & = CSMA/CD Bus 4
I - v
n 2160 g 160} ;
0 £ e
! c120f 31
& -
v: = 8o 2 8
; S
¢
': < Qr 40| J
0. t
._0‘ y
» 0 A A Y 1 i 4 4] q
0.00 4.0 8.0 12.0 16.0 20.0 24.0 0.00 4.0 8.0 12.016.020.0 24.0
? §
t: Date Rate (MBPS) Date Rate (MBPS) Wy
A :
’ (C) 2000 Bits Per Packet,] Station (D) 500 Bits Per Packet, 1 Station Active
[Active Out of 100 Stations Total Out of 100 Stations Total
R «
l. N ’
()
i) o'
y
R Figure 4-8. Maximum Potentlal Data Rate for LAN Protocols.
X L}
fy Ly
p :
! :
A ‘h

-

R 1 - - e gy -y s
".'e'}:'.'l‘.,‘l‘n \‘«‘I'-‘l'-.l‘- I'a‘.‘- AN AN ‘!.‘Q ‘LI': l‘L »

R N R R OB T R, R LA AT O R AT A L AT AT LA R T AT LA R U U U R UG AN Y 2, ¥ v, ol gl ol dad Sab 0ab Gch . R 11‘

55

4.9. General Results for Other Network Approaches

Other nmore general approaches to local area network

L T T e]

implementations are summarized below. These include packet '
switching using partially connected mesh topologies, circuit

switching, and frequency division multiplexed (FDM)

]
" switching. or 1its optical equivalent, wave division :
) multiplexed (WDM) switching. 3
: ;
i :
k) Packet _Switchlng_on_Partially Connected Mesh_Networks:
1'

N)

"

¥ A
) M A E(TH) -
: T = z - -l ------- E - e a» o ;
K)

2‘ where:)
[/ g
& \i = flow on link "{*, and ¢
§
Y = total offered traffic.
X "
¥ .
[t
’ t
E Circuit Switching: '
T = E(Tp) + Time Awalting Permission. ’

L]
E Fast_Packet Switching: 2
0

4 T = E(Tp) + Intermediate Node Switching Delay.)
) '
, TOM Switching:

t.

é Basically, the same as slotted ring.

K

¢ EDM_Switching: 3
Y X

Fized allocated resources.

Ve -

r

B O A A M 1 A AN 300 AT I AN P A A S ot S s g7 w3

(IR TSN TOR T S TSR S8 TR U T R I X S Trar e varey v, - Uy . o g B N N N B " ”
2a9°9 AN P AN AR RN L X ¥2'd Ve 4 ¥, Y WA WY Yag® » " Dy R e a0 08 a0 0t 85 8'0 874 ath e%s 5"} ;

s
“
: 3
{ 56 J
5. SPIRAL NETWORK DESCRIPTION %
\
o N
; §.1. Architecture :
§ a
! ¥
; The minimum spiral network contains four modules of four N
e ¢
3 computer nodes each for a total of 16 nodes. A module is <
§
X formed by fully connecting four nodes. An internal base 4
; numbering scheme is wused throughout the spiral network, v
. \
‘ regardless of size. These internal base four numbers are the J
¥ "
: basis upon which the self-routing algorithm 1is built, and $
) therefore, form the heart of our fault tolerance strategy. o
: »
2 “
) »
: N
]
z %
("
by’
b
4 J
. ¢
X o
b ~!‘
X 5
B 4
. 3
: \
by
K "
b)
, ;
. r
: 3
r
| Q
! Figure 5-1. Minimum Four Module Spiral Network. N
. ~
3]
',l ’
| 5
< A TR AT T AT WY NN NI N NN N NS RN ST N TN A

57
Figure 5-~1 shows the minimum fo.r module, 16 node spiral
network. Actually, the minimum four module spiral network
is better dlisplayed in figure 5-2, except in that
configuration, the six pair of 1links used to expand the
network to any deslred size are not obvious. Spiral is

expanded by first fully connecting, in groups of four, the

N A

nodes to be added. These nodes are asslgned the next

.y

consecutive base 4 numbers avallable beyond the highest base

o
"

4 numbered node In the Current splral network. Then this

IR W O

new module is brought into the existing topological

-

-

structure by altering the six pair of links shown in figure

-

2

5=1. Figure 5-3 shows the result of adding a single module

to the minimum four module topology of figure 5-1. Figures

e

Figure 5-2. Alternate Form of Minimum Spiral Retwork.

e TRe TR

»
k)
)

o W Tt N N AT AT S A T TN TN T AT e e T, o e T
i all » 3 i 2 P o

-
»

Datd a¥6 ofP atp el aty oty aNet g AT NN NSt ke TR aUAY 1ug A URTATE 2 0AT IR

Figure 5-3. Five Module Spiral Network.

5-4 through 5«8 deplct 7, 8, 1!, 13, and 14 module splral
networks. Notice In each case the six pair of links
resulting from the expansion. Clearly, as more modules are
added, the ease |{n expanding the network becomes more
evident since the six pair of links become more pronounced.

Close examination of figures ©5-7 and 5-8 (the 13 and 14

module cases) reveals that as the spliral network grows,

there is a pool of modules totally unaffected by the
addition of new modules. The significance in this point is
that the network can be egxpanded qQuite easily by temporarlily

disabling nodes directly attached to the six pair of links.

~

) e % |
P T R T eNet

PR VA AT RN MU RN JO A R IO R OGO T I TR Y M RN N T M N, SR L N UN L MU R oA o A T O™ 'm g A g 8% $°2°8%2 452 42 A2 R V2 RV, AV

59

¢ a). Seven Module Spiral Network.

o b). Threading Pattern.

» Figure 5-4. Seven Module Spiral Network and Threading

o, Pattern.

t

() .

() . o NN ™ " " » T e M PO UK -t ™ AT G e ’ ot ™ ~ - W
AU DA OO AN KOO A e e ’ a0 Nt et N St S R) OSSO .‘b., i ey X

PR OWICERIPRUI I TR TN N MO O R U A R R e O O N R T R T A T T YT T T

60

a). Eight Module Spiral Network.

,—--—-\.
- - —~
-~ ’ /;’<::::1s?:7~“\\\ ~a
1 . 3 4 5 6 7 8
N N 7 7
~ ~ ~ -

[
— '\' - o
S — -
e g B o e 8 =

b). Threading Pattern.

Figure 5-5. Eight Module Spiral Network and Threading

Pattern.

L A T A N

™

e - - A G e G

P ™

"~

».
-

P

S AN TR T LT T

6!

COO\

Ly Figure 5-6. Eleven Module Spiral Network.

PSS I TR ™ : e N R RN Tt
PO OLIOUCRI AN WA U W 2t X X N AN 8 "‘ ¥ "ﬁ\.", e T Y P L

Tatala S%eU Wa Bav @a’ 018,88 0% B,

62

'
E T oy - Sae i e e - - e o Vol g e n o P F Y Yy L W) P e g - T’

Thirteen Module Spiral Network.

Flgure 5-7.

[e g

A ey

PR SN ST SIL AP W WAL SUE 0, T LSO VA WU WU W ML ALY AT PU WU WU RPU WG W TP WU WO WA O AU WU WS W N AR AR S KA AR AR AN N ‘Bab |

¢ 64

i All other nodes continue operation as usual even as the
" topology 1is being expanded. This last point 1is one of the
major attributes of the spliral topology. When expanding any
of the four traditional topologies, not only is the overall
network affected during the expansion, routing and
i theoretical 1limits must also be altered. These alterations
are usually at the expense of temporary inoperability of the

network.

In the spiral connectivity scheme, every third module |is
thre#ded together top and bottom in a circular fashion. The
K process of bringing new modules Into an existing topology is
akin to adding an element into a doubly linked circular
list. Both nodes on the front end of each module are
connected to the nodes on the rear side of its link module.
This threading pattern continues until the last pair of
front 1links loops back around and connects with the rear
side of the front end module. Figures 5-9 and 5-10 repeat

the network threading patterns for the seven module (28

T -

node) and elght module (32 node) spiral networks. These

threading patterns reflect the order in which modules are

- h“-‘*‘*“'_

encountered as a message proceeds towards its destination.
% The threading pattern is also a quick check that all modules

are reachable.

R
O T e ST

T T R L T L A A S L, o N N AN LA AT AT

T -

- e - Ay S -

L P

C

- ga S
3 e’

-t i

iy o .-

D

b
L)
]
s
.

ERPRN R U NN RN E ST UYL WA L AT RO SN B IR W NN LW PO IUY AT KA S\ U WU YRV NUANKXERE AV - LTS)

y P AT ™ - A Pg e D o R - [I P
1 MUCOLOUOOON ¥ l""‘.-'l‘-"‘-.“ﬂ L} e“’n‘l » l‘n'l “l‘, S ACIANY \.l’t‘. N wOCK M R - ¥y 't.) | e i B e { 45. .. ")I'_;(‘ f'“‘-f WhtHt

65 ¢

7
/
\ .
\

a). Seven Module Threading Pattern.

0-13-12-25-24'-9-8-21-20::::j~1;j~l;:?5
3=2-15-14-27-26-11-10-23-22-7-6~19-18

b). Unwound Spirals.

st PaC C K Ny

-, -

-y Y

- - W

Figure 5-9. Module Threading Pattern and Spirals.

'/0—.\. _-'
— S
~ - Py ’>_<:::1=r:-\\\\ >~
3 4) 6 '/7 8
\.

1
_) .,
~. \\. // .’./ !
\\ \. .—'=.:—¢’.’ '

s A

Flgure 5-10. Eight Module Network Threading Pattern.

g
J

)
\
)
\

t

L '.‘ (N

LIS
¥
K

i

ES

oo Mo .
ol e

66

Figure 5-9(b) shows the two unwound top and bottom spirals
for the seven module network. Evident here are the four
totally disjoint <(nonoverlapping) paths that exist between
any source-destination pair. In any size spiral network that
has no failed nodes or lihks, messages can travel along the
top spiral right, top spiral left, bottom spiral right, or
bottom spiral 1left. The Preprocessing Algorithm -at the
source node determines which of these four routes 1is the
shortest path to destination. Spiral and direction flags (SF
and DF) are then initialized, and used by the self~-routing

algorithm for on-the-fly routing from source to destination.

The aforementioned architecture’s connectivity scheme
remains fixed, no matter the desired size of the resulting
spiral network. Since every third module s threaded
together to form the desired spiral network, the total
number of resulting modules must not be an integer multiple
of three. When the spiral connectivity algorithm is applici
to modules (m) whose total number is directly divisible by
three, the resulting topology Is a3 network that partitions
into three subnets of m/3 modules each. ' This special
attribute of the connectivity algorithm leads to a key
physical securlity advantage detajled further in section 5.3

of this chapter.

NI S LA A T T AT g 7 AT n T " g
Y ByS Wt R R T T T 0%, AT Y, Wy

I R 2 .t ot 2t R

e s o

o -

Lo Y

™ e T o w

N

‘od

P R

sy

Daw 4o m wo 3 0%

e

- -

A‘Q‘ ¥

T

N I N R R X A I T N R T T I N M L N U A R I I I R S TN TUR I RY Y v a4 AN gRELts oEE e ald argtabr i ERY

67

5.2. Typical Node Conflguration

5.2.1. Physical Characteristics

All nodes in a spiral network are the sanme, although they
need not be. The functions performed for error free
routing, and routing when failed 1links or nodes exist, are
also identical. None of the nodes is designated the
"master® to other "slave” nodes. Further, no node malntalns
connectivity data for the entire network. The absence of
the need to maintain such information, means there s no
delay assoclated with disseminating update status
information to the other nodes. Each node maintains status
information on the nodes to which it is directly connected

only.

Figure 5-11 is a simple graphic representation of a typical

spiral topology node.

Figure 5-11. Typlcal Spiral Node.

N W

L

-

XL IO X

- 1

gy

? \FLS L, » o "f{ff"_"." PAT AT R AN AT ALY PR Ty ey I I - -,_‘~‘
. A"'. Sty il.l.l. L E A g X % v O ALY 1Y ~ n’l-. Ar... .O~.".‘ X .l.- N g N <, \’-\. -.‘ 4 ‘)"

Ay £t A E Ev e alh b e e Wy K TR R R N T N N R N U P N O A R A R T T T RIS . 5,8 0o Tub 0.8 Vol B4 b

e oo

-y 3

BRI R

]
L]
W

kX A..‘l-‘ o“.t LX) .o. - 5'

i
'

68
The nodes are connected by four full duplex links. Three of
the links connect to the other three nodes that form the
module. The forth connection is the link node that extends
to the next (or previous) module, as depicted in the module
threading pattern, (See figure 5-9, for example, for the
threading pattern of the seven module, 28 node network.) All
links operate at a common speed, which can be set as

necessary to achieve the desired performance level.

5.2.2. Input Configuration of a Spiral Node

Figure 5-12 represents the message processing procedure
followed during a typical message arrival state. Traffic
arriving on each of the four 1links is composed of transient
messages on their way towards flnal destlnations, and newly

arriving messages to the network.

Filgure 5-12. 1Input Configuration of a Spiral Node.

A A A A A A n e A AN AR BT At Xt R T a "
il .. - -..‘. “"‘h « .C".-. A".l ’0..,. .l. .. l“ ~~\\ [, ‘.‘. \ \.\ ‘\ N ~ &':-‘A\:;_

--.—...‘-.

gl

A3 N N

!

222

!
v, ¥,
IRV Py

‘- - Co AR CB e L - e e oA oy ke -

g G o v

- b

3
L

st B Ba O T Ot b e ¥ e hh e A et et P el P a8 et et a2t a2 a a8 et AN AR AN RYA 2V 2% otk nvE 2" ati-

69
Depending on current busy state of the node, these messages
may be queued for processing. Of course if the 1link speeds
are set for extremely fast processing, then these gqueues
should be extremely short. A typical message has elther
reached 1its destination module, or must be sent on to the
next link module in its path. If the current module is the
destination, then the Rapid Processing Algorithm (RPA)> gates
that message to the final destination node of that module,
1f the current node is not the final destination node. 1If
the current module 1is not the final destination, then the
Rapid Processing Algorithm gates the message to the
approprlate link node. This link node Is found by checkling
the splral-destination flag pair. Additional routing

algorithm details are found in chapter 6.

$.2.3. Output Configuration of a Spiral Node

Figure 5-13 shows the output side of a typical node.
Whether a message is transient or a new arrival makes no
difference to the Rapld Processing Algorithm. All messages
are gated to the approprlate output link from the typlical
node. The choice o¢f which 1link to wuse i{s governed by
whether the current module ls the destination module for the
message, or only an intermediate module along the message’s

path. If the Rapid Processing Algorithm determines that one

" (or more) of the output linksv7nodes has failed, the spiral

or direction flag 1s complemented. If the failed 1llink/node

\
- - T AN L L R A B S T A I R e P T TR TR PRI R IR | L] -
Wb, OO TN '-‘,t'- LA s MRGARERLT S S G e). M M o X ™) o . "" .,. .,- 'h A

PR RUR

IO IC I RO

A R

oy~

P X & A A Rt FLIA S L

o

o

g
pl e Wy o e, 8 4)

[PSC PN TOR AR AR AR R PO AN AN TN X "X SN NL P U XY X “aava 452 8% $%2 4% 42’ *, ok et alavala¥al, s dag

70
is the final destination, a message of non-del.ivery due tc
failure, can be sent back to the sending node. If the
falled link/node is an intermediate one in the path of the
message, then the new SFDF pair is wused to automatically
adjust the path of the message around the failure. See
chapter 6 for additional details on routing with and without

failures in the network.

Figure 5-13. Output Confliguration of a Spiral Node.

-, L ¥ o, La o oy W W W W W w0 s I S W Bt ¥ W i -,
N L T A I ™ e N M T e T T M ™ e D T Lo e D s e i

U
{
4
i

e
-
"

-~
ot

sy g
b e B Mg

ERL

dN
.
-
[}

N DI AUV AU VIR WIER RO R VR R AN SR AT Ty W A RSN AN AN O RN RO WY

-

71

’

5.3. Key Spiral Network Features

The six most {mportant direct consequences of the spiral
topclogy are 1) ease of expansion; 2) fast, on-the-fly
self-routings 3) extremely high tolerance to faults; 4)
increased network security; ©5) potential for the total
elimination of store and forward transmission due to routing
decision delays; and 6) rendering the maximum path length

{ssue moot.

Perhaps the three most significant features are its ease of
expansion, fast, on-the-fly self-routing attribute, and
spiral’s extremely high tolerance to falled links or nodes
thi-oughout the network. These two latter features are

further amplified upon in chapter 6.

The ease at which the spiral network can be altered, whether
to make larger or smaller networks, s evident from the
previous description of the spiral archltecture. Yet ancother
unique feature of spiral has significant security

ramiflcatlons.

The construction and operation of the spiral topology is the
same regardless of network size, with only one constraint.
We contend, however, that thls constraint 1is a major
securlity attribute. Because- of our connectivity scheme

which directly 1links every third module, the number of

L A P S

o -' A .r.a'v' _r{' r!!f~<' -'\-l.f~_" [N Ly

o L4 o, - Pra® w™ ™
R AV W o R A R W VR

72
mod: *s in the spiral topology must not be an integer
multiple of three. When the spiral connectivity pattern is
applied to modules whose number 1s a multiple of three, the
network partitions into three separate but equal subnets of
total_nodes/3 nodes each. There is no possible way for the
three subnets to interact. For example, figure 5-14(a)
shows a 12 module, 48 node network using the spiral
connectivity pattern. In flgure 5-15(a)> 1is a 15 module, 60
node network connected using the spiral connectivity
algorithm. Upon close examination of the resulting network

threading patterns of figures &5-14(b) and 5-15(b), one

notlces that the 12 modules are completely partitioned into

e

three separate subnets of four modules (16 nodes) each. The

-,

15 modules are partitioned intc three subnets of 5 modules
(20 nodes) each. That s, we now have the case of the
minimum four module (16 node) network of figure 5-1
duplicated three times, and the five module (20 node)
network of figure 5-3 duplicated three times. If 21 modules
are connected, then the network partitions into three
subnets of seven modules (28 nodes) each, and thus
duplicates the seven module network of flgure 5-4. And

herein lles the significant security implication.

In environments where highly sensitive and classiflied nodes

operate in conjunction with wunclassified, routine common

user nodes, the abllity to temporarily partition the network

with ease may ke a major network design criterion. If there

AN A AV T AT O S o o i o £ A

RNV TR NN N U RURINUN N S IR S T W R X T R W O R O O K T R OV T X K R IF AN ENUN VR UV UW UV UW U AU S L UL

73

Ry o o -
T

. P e
. Ly

: b). Threading Pattern.

a). Twelve Modules.

P
- -

Filgure 5-14. Twelve Module Network and Threading Pattern.

;. - -
- -

L S I Ve S R A YRR IR ~"lf_\ N e e W S ST P CT L, CRNL A
. X AN o K A A

1)
it X Mg R Mot Mol N IR B AT N A IO D 00 0 . Calanata a e a A Al o aarna e n e A

WM TSR P A R PR R WO W WU W ER Y S OO OO OO R R R R O T R R R T TR T T Y Y DWW Y Y DV PR PN U DY TN IR
4

3
-
-

[OO B R Iy T

74)

1]
u
£
i)
IA)
- . -) -_ -
b S o

—————— A —— T
-
X

!; &)
2

L
a). Fifteen Modules. ; . !

-

Figure 5-15. Flfteen Module Network and Threading Pattern. 3

€ b a8 N i ot T a et et e e e Nt M e aVE e R VR A AR ETATE BV At e th 2tk w¥h A% D ati el At At a¥A e ath ath ath. LN U XU R e N R e U T T T RO WO Y™

K 75

is a recurring need for added, or assured security, whereby }
only a portion of the total nodes decire to interact among |
themselves, then the network planners can identify these
"super nodes® at network design time, They then can place
these nodes in the proper logical positions within a fully
cecnnected spiral network. Operation proceeds as normal until y
) the temporary need for added security arises. At that time,

by increasing the number of modules to the next closest

=)
- e

ﬁ multiple of three, the network partitlons intc the three
% subnets. One of these will be the subnet consisting of the ¢
P
- "super nodes” only. The two remaining lower priority subnets .
% still have the ability to communicate with other nodes on ;
g their subnet. This temporary network egpansion tc the
e nearest multiple of three is simple, and fairly inexpensive. 1
§ The temporary expansion need not Involve the expense of :
ﬁ acguiring standby hardware. B single, existing computer can]
B be used to simulate the additional nodes. When the temporary 1
?, need expires, the network can be returned to its original E
k configuration by deleting the temporary artificial nodes. i
W Recall from section 5.1 of this chapter that the expansion .
. 1
K can occur without bringing the network down. A broadcast ;
, message could be sent to each node advising of the impending :
? partitioning Into subnets. ;
i::
: The next spiral network feature stems from the use of fiber :
2 optic technology'and the communications industry’s plans to
? evolve to an Integrated Services Dligital Network (chapter :

P 1 - » 1 4
o R O O O R e S B O N A WO T T

0 M 2 W X O A‘-l’-'- O '.‘ Ly A XA MM N M

¥ MM ARE AR R A VAN XY LYKY RS
Ot
s

¥
1

.ll-

> . - A - T s T
L) K M E

-
>

Ll
K]

A g) -n"
Ly “§ ¥, "g W, .'1, |_"Q_l'|.l'l A -'l'v"‘x l'a’.'s‘\‘e'l‘n"'- \.r.l.o 1 -'l‘. W, .‘l"" ‘. * ..»...u."n W l‘o ' ..

LU LW LN W LU LW ST U U U0 v Jiak rah €ad iahotan Nt 0ol bal 1ok 00" 18" el "0 e 8" 0an A 85 8'%: a%h &'

76

2.

To take advantage of the tremendous speed associated with
fiber optics transmission wusing our spiral topology, the
network manager or designer chooses a3 high enough link speed
sc that the mean queue length of the spiral network is very
small at steady state. While queue buildup is unavcidable,
the self-routing algorithm precludes the need to store
messages while routing decislions are being make, and
sufficiently high link speeds minimize the need to queue the
nessage for transmission on the outgoing link. With current
topologles uslng optlcal transmissions to transport
messages, optical-to-electrical conversion of messages is
required before an intermediate message can be stored.
These conversions are necessitated by the absence c¢f viable
optical memory units. Once a routing decision for the
message has been made, the message must then be converted
back to Its optical format for further transmission.
Spiral’s on-the-fly routing attribute precludes the need to
store messages at Iintermediate nodes for routing, which
means there will be no need to convert the message from
optical-to-electrical and vice versa. As expected, in this
scenario, average link wutilization may be drastically
reduced over the store and forward mode o¢f operation. But a3
lower link utilization is a reasonable tradeoff 1f speed |is
indeed vital. Speed |Is extremely vital for voice and

realtime video trafflic In an ISDN environment.

.

e

¢
U
¢
t
J

-
'~ ™o uw -

-

P~

P

.y

T w3 oy e - § .=

-
»'

- o o

e

B ey @ e - -

kXK X

>

LR K LRI o Patai. gt - . N a RN RNEMN R » - M MXRLLAUAY N U U * ALY N X Y Y R A (WX AN %

77
Further, by using the spiral topology and !ts Inherent on-
the-fly routing attribute, network planners will be better
equipped to decide whether or not packet switching is more
suitable than circuit switching. In the past, circuit
switching was used to ensure uninterrupted transmission of
critical, realtime traffic. The path established from
source to destination for the circuit was completely
dedicated to users for the entire duration of the
transmission. With spiral, and the careful selection of
link speeds, the overall network throughput and efficiency
may be increased by using packet switching, or fast packet

swltching.

Finally, since the network 1is self-routing and requires no
Intermedlate message storage while the routlng decision is
being made, the traditional concept of maximum path length
becomes a moot Issue. To a great extent, path length
determines network response time for a message. With the
spiral topology, If simulation analysis yields a response
time that 1Is too high due to long paths or queues (or
whatever the reason), one simply lncreases link speed to the
point where the gqueues become shorter, and the response time
Is again bearable. Once this fine tuning using a simulation
or analytlical model ylelds an acceptable response time,

network analysts can then implement that configuration.

-

s

-

-

O A X

A S

- o =

A Y ™y R LI,
N0, Vit 5, 15 a%) m&&mm

vy , . - R WL 8 A e ALY
RO O O M O N N N N O Wy K g e W o Vi Y B A AT T "o LA

T va§ Vg TNk Vg Sttt el TaD Nat tnd SaU, Tad 428 S F naip Vol o d wpk Mad W “ob o aal "2l "ali Vel Vol T2k val val ¥ b, L) Valh Vol wal ¥ad & Azh gl L Vg Chah

78

5.4. Simulation Model Summary

- .

.
-

N The model wused to simulate the spiral computer network

topology <contains approximately 2700 lines of C program

-
s

source code (Appendix E). Spiral networks containing 4 to

-~
=

y 20 modules (16 to 80 nodes) were established and evaluated,

using O, 1, 2, and 3 failed nodes. Also, the failure of

> iTL AT
-y

complete modules was analyzed. In every case, the common

ink speed was 19200 blts per second; 4000 messages were

El e

delivered to reach a simulated steady state condition; and

»

R
R
Y O S an

4000 nmessages were then delivered and used to gather

)

statistics. Appendix B contalns more detalils on the design o

l—"
-

and implementation of this simulation model. And Appendix D o

- v

contains the Summary of Simulation Results for each of the

v

-

PR

simulation runs.

-

The computer model used to gather statistics for comparison

K simulates the spiral network topology as described in the

-~
N I R)

1 current chapter. The performance of the topology was
evaluated wusing established technigues that apply to :
i networks whose messages follow a Poisson arrival pattern,

Y with exponentially distributed lengths. Analytical results

o

including mean gqueue length, mean and maximum path length,

mean network response time, and system utilization, were

Y compared to the values obtained through simulation. b

O O A T O N N N N T N O S U S o T T T T A T O O RO T R O >y AL I S T Aoa o g€ ad 2 et et

.
- -

-

ok o

79

6. ROUTING IN A SPIRAL NETWORK

MO TR ™ o S

6.1. Introduction

e

ot

The next sections discuss how the spiral routing algorithm
B transports messages from source to destination nodes. These
sections include examples of routing with and without)
fallures. The fajlure scenarios range from a single

)
K failure, to the case where some nodes are not reachable.

- e e

All examples use the seven module, 28 ncde spiral topology
for convenience. Also, the same source-destination palir is

! assumed. t

v 6.2. The Routing Algorithnm

The splral network connectivity pattern generates two
separate top and bottom spirals along which messages travel
to their destinatlon. Figures 6-1¢a) and (b) duplicate the
" network threading and unwound spiral patterns for the seven

module, 28 node network. While this dliscussion assumes a

-y

seven module, 28 node network, |t applies to any size spiral 3

LR,

network. Messages whose destination address ends in "0* or N

“1", base 4, are routed along the top spliral. Those ending

-

3 ln =2¢ or "3° use the bottom spiral. These four
possibilities 1led to our selection and use of the base 4

numbering system to label -~ nodes. The Preprocessing

T
LAY

Algorithm at the source node determines the optimum path to

D ®
;)
> !
W - . e oa A A e a e m e i L a e s - e . -

" P A 7 g SN B e B e 'J“,“,* N w'\.

L™ ;| o
AU IOUK OO R o M O

>

'y

R AN R R A R N R R R T M R R AP R Y ML SN Y Y U Y U T T R O ooy

80

a). Seven Module Network Threading Pattern.

0-13-12-25-24-9-8-21-20-5-4-17-16-1
3-2-15-14-27-26-11-10-23-22-7-6-19-18

b). Unwound Spirals.

Figure 6~1. Threading and Unwound Spiral Patterns.

destlnatlion by finding the splral path which contains the
fewest intermedliated nodes, whether to the right or left. A
one bit spiral flag (SF) and one bit direction flag (DF) are
then initiallzed by the Preprocessing Algorithm before the
mResSsage enters the network. SFDF pairs have the following
meaning: OO0 sends the message along the top spiral to the

right; Ol uses top splral left; 10 sends It bottom splral

‘e fve. 82, 8"

-

o o -

- g

-~

P e gt aTE Gt gin U3 AU A0S g¥E B aCa e ab ath avg ath avh AV ol N e e PR AVEtabEalateta a6y atAVatEt abaC UR R da kAt int NaT kR YR ata 1a 0p " ata"

81
right; and 11 uses the bottom spiral left. These flags are
attached to the message header, and remain unchanged as long
as no faulty links or nodes are encountered. When a message
arrives at an intermediate node, the Rapid Processing
Algorithm places it on the proper output queue from that
node, based on the SFDF pair value. If the selected output
queue in tne message’s path ls connected to a failed link or
node, then the Rapid Processing Algorithm complements the
SF. If the SF has already been complemented within the
current module <(as indicated by a module spiral change
counter), then a spiral change has already been attempted.
So the DF 1s complemented. This case suggests that fallures
in the current direction have occurred along both the top
and bottom spirals at or near the same point, such that
these spirals are completely severed in the current
direction. For if this failure pattern did not exist, then
the message would advance at least one node closer to its
destination. Makling such an advance would move the message
past the point of fallure on the other spiral, and allow it

to continue on towards the final destination.

After the DF 1s changed, the message then continues on
tovards 1its destination 1in the opposite direction. Thus,
based on the pattern of falled nodes, it s possible for a
message to retrace its steps back through the source node as
it seeks out thelpath in the opposite direction. The routing

procedure must check to ensure messages do not oscillate

LD -
B A e e

9

‘.'&) l"?!."..‘.d'.,l“."‘..‘..Qh.!"....-‘.‘,‘.‘-‘ -“.\ .q...l'\n“'p.‘.l.!.m‘!.t. l.. X) 9\ .l'-.b. , N .'.~ M X ..!'u ['- F 'ﬁm':'t':::\:i": ‘:\\xﬁ\ﬁ:ﬁ:‘:\:‘iﬁx‘bi

[SPCWITR W LR N UINAW LU

82
between spirals, or alternate directions indefinitely. Fault
tolerance is inherent in the algorithm since altering the
SFDF palr is guaranteed to find a path to destination {f one

exists, regardless of the pattern of failure(s).

The routing algorithm used in our spiral topology Iis

summarized as follows:

1. If the message is a new arrival to the network, the
spiral and direction flags are jnitialized by the

Preprocessing Algorithm at the source node.

2. The message arrives at a node and is checked to
determine if it has reached its destination module. If so,
It 1is gated by the Rapid Processing Algorithm to the

destination node within the current module.

3. If this Is not the destlnation module, the message Is
sent to its gateway node within the current module if that
node |s operating. The last digit of this gateway node’s

address is SFDF, base 4. Go to step #7.

4, If the gateway node has falled and the SF has not been
changed while in the current module, then SF s
complemented. Return to step #3.

-

5. If the gateway node has failed, the SF has already been

] . . . , " R "~ < n o a e
R O o e S O O i A X X o IR M T S M M S, SN WM Mol o
UM R AP LR A My PR A0 0% W e RO 1 LM

YA VTR L7 LT IGA U S0 S ¥ Wa® a0 Gal Val Vo N o 4800 sh 3 R AN o A R n8:074. 075 255 nV 2 & 'wvh-a ¥k al "a Wb a\ik"; R TCR TON T T PO

L

- 0l

Car -

-

~
-

O -

Y xR

§ oo

TR X P

T

P N o

- -

AL

NG AN

83

changed within the current module, and the DF has not, then

complement the DF. Return to step #3.

6. If the gateway node has failed, the SF has already been
changed within the current module, the DF has already been
changed, and the message has returned to the original source
module twice, then there is no path to the destination. End
of trip for this message. (The algorithm terminates for
thls message. Take approprlate action to notify source node

of inability to deliver.)

7. Once at the gateway node, gate the message to the module

in its route path. Return to step #2.

6.3. Examples of How the Routing Algorithm Operates

All examples used iIn thls sectlon were chosen to emphaslize
spiral’s high tolerance tc fallure(s). While the response
time is increased as more fallures occur (to a point, then
the response time agalin decreases), our primary concern ls
confirmation that the spiral topology still functions in the
case of failures. Response time !s addressed in more Qdetail

in the next chapter.

I T, PL L

WOV X e W r W e W L4 AV RV IVL 2" T INE o N Y AR T N ey
4.0,'- ot .'n"‘ i XN ...h A T * \‘.- -,.".“.‘ NS, -\\.' .‘\ n‘

-

N,

SRARK

o

-

i 8 W e e

-

o e KN W G

P P

e B e . P

oy

e

e -

"

" P ;- vy - ; - » L "]
R O O O R O N I D o e W BT n‘u‘.'\ .l‘»i‘l.l' A -, "’ ")' X ;~ ' IO Y R o " ‘ " N - iy ,Y'h % v, tﬁ'ﬁ;ﬁi’hv‘.ﬁ‘

AU

R R S R U R R R O N R T I S R e T R T I IO R

84
Consider the seven module, 28 node network repeated in
figure 6-2. Assume no failures, and that we are sending a
message from source node 20 (110 base 4), to destlnation
node 27 (123 base 4. The Preprocessing Algorithm
determines the optimum path and sets the SFDF pair to 1!
(bottom spiral left). The route chosen by the algorithm will

be 110 => 113 > 22 > 23 ~> 122 =) 123.

Figure 6-2. Seven Module Spiral Network, No Fallures.

DT TSR TS
WM ML W

I

¢
p
~
X

» a8 P o o

g?};l AT S TR A Y et aTa M L QTN A A T DCRWTIT Y m Al Ay B

~AL9€ 113

UNCLASSIFIED

.

HuFﬂg%T TOLERHNT SELF-RDUTING CDHPUTER NETHORK TOPOLOBV

R FORCE INST OF TECH WRIGH

0l
T L MITCHELL 1988 AFIT/CI/NR-88-68

T-PATTERSON AFB 0
F/G 12/7

NL

|

d

PN
- B e e

P NOSCRUSIR R X NN N

o ‘9",0"..

(o i

e

’

l‘t,"v, Y
a'k.. """""

ey t‘
-"'s"ﬂ“ .’ q.

NN SN AN EXM NN I U RNURTR A

M RMRAY TR NS LN O

XH)
N .
L

FEEFEEER
EEEE

===
HN
Q

Er
[3
cs

==
=
. “

——1

M L6

b g4°3 ota g¥h oi0 g¥s

e e i a W% 2wd g A) T I P U IR R A N O R T A O N IR U Y o a3y himbiag s 4% g 4b, . 5 g.¢ .- 4, »

85 ‘
Next, the same source~destination palr ls assumecd, bu® now N
node 11 (23, base 4) has failed. Refer to figure €-3 for

this example. The route now chosen by the algorithm is 10

=> 13 => 22 => 21 -> 120 -> 123.)

- -
Dc e e L R XX

. : -
e

. o v o b
-
-

Figure 6-3. Single Arbitrary Node Failure. X

AR e
-

.---
-~

- oh
>

4 o . \ S WY W4 i oA - \ ‘.
2.y U Vs Va8, 0 8 Vi UG080 oA T S N f o \ G ﬂ.c'l.').o"’nc b, u".o'l.na‘ " o !o s !;.I.-.Cp Wt '- LM -‘tn‘. .' M o PORIC™ DM » NN

> LY e

N

v e e o

86
In this next example, nodes 9 and 1! have falled (nodes 2!
and 23, base 4). We again assume the same S-D pair of 20 -
27. From flgure 6-4, we see that the path chosen by the
Routing Algorithm is 110 «> 113 =) 22 => 113 =) 112 =) 13 =)
12 => 103 => 102 => 03 =-> 02 =) 33 =) 32 -> 123. Notice in
this case, both spirals are cut off in the direction of the
shortest path. The algorithm adjusts on-the-fly by
complementing both SF and DF. The result is the message

retracing 1ts steps back through the source module in the

opposite direction. However, the destination was still

reachable.

{102pe———{103
by 19

Figure 6-4. Two Node Spfral Network Failure.

L o

LA DT o R ey

"X 3

S L)

- L -

AT I

Ead Y

23N D N

U IO LR L B WO NI AU TR U L MR ST SIS UL AN TG M TIIC T TR L TN) IRIVR U TUR TR N LK TLERUR LR U AL O

87
Next, we start with the last example where both spirals were
cut off in the same direction, and additionally kill node
03. Again, we use the source-destination pair 20 - 27. The
path chosen can be traced through figure é-5 as 110 -> 113
->» 22 -> 113 => 112 => 13 => 12 => 103 =) 102 => 100 =-> 01
-> 00 => 31 => 30 =-> 121 => 123. Again, note that the

destination s stlll reachable.

Figure 6-5. Three Node Spiral Network Failure.

In this final example, the fallure pattern is such that the
destination 1{s unreachable. In addition to all previous
failures, we also Intentionally klll node 01 (refer to
figure 6-6 for the pictorial representation). In this last

case, the <self-rcuting algorithm results in the following

path: 110 => 113 =) 22 =) 113 => 112 =) 13 => 12 => 103 =>

- - e~ e

R

[f'e'w = o ® o

88

102 =-> 100 => 101}

-> 10 -> 11 => 110. But now, both spirals

have been attempted In both directions, and the message has

returned to the source module (#6) twice. The algorithm

recognized that the destination is indeed unreachable, and

therefore terminated at stép #6. Why should the algorithm

allow the message to return to the source module twice?

Because one return trip is possible due to direction change,

as occurred in the scenario preceding this current example.

If node 00 iInstead of O! had failed (figure 6-7), then the

destination would still

be reachable, since a spiral change

would again occur. In that case, the path would be 110 =>

0
: 113 => 22 =) 113 => 112 => 13 => 12 =) {03 => 1C2 ~> 100 =)
3 v

-> 02 <> 33 => 32 -> 123.

01

" Figure 6-6. Unreachable.Destlnatlon Examble.

NI AL N SR W ML I ALY L G B e b X X PO NN S MM My O'-.l‘-_, (i A ‘»‘l'. h‘t.l.n.l‘i.l.»'o.p WY’ AI‘. Uy . .

PAEITSE) L YO | LI . I R IR LT S B T 1Y S P [P FON RS U PN WA U TN T

,
e

89

T

-~

-~
-

-
-

- - N

-
b

-

Figure 6-7. Destination Reachable After Several Changes. 3

P R

6.4. Summary

In each of the above examples, the resulting path chosen by
‘ the algorithm was longer than the optimum one of the error 1"
X free case. As mentioned earlier, the longer path means i
increased delay for the message. However, the achlevement
of high tolerance to fallures anywhere in the network s our

primary concern. Further, 1link speeds are arbitrarily \

[L
-

selected to achieve specified levels of performance.

i' Network planners need only select a higher|11nk speed for 3
3 the error free network to compensate for the increased path 5
' length resulting from severe node or module fallures. :
3 Finally, for any source~destination palr under error free g
Et conditions, the algorithm always selects the optimum path. ;
“ In the presence of errors, if a path exists petween any two _

nodes, the algorithm |s guaranteed to find |t. h

0T T T A AT N T I T It N R A A AR R U W AR

90

7. ANALYSIS OF THE ERROR FREE SPIRAL NETWORK TOPOLOGY

7.1. Introduction

This chapter’s primary emphasls is on reporting results that

g T o . W W

apply to the error free spiral network topology. When

failed nodes exist in a spiral network, closed form

algebralic results similar to the ones reported In this

chapter, are either impossible, or extremely difficult to

derive. For example, the impact of failures on the mean

path length Is dependent on the locatlon of those fallures.

Two arbitrary node failures on opposite spirals that are not

directly opposite each other, have less impact on the mean

path length than two fallures that are opposite each other. y

In the latter case, both top and bottom spirals are cut off,

causing a message to reverse its direction and retrace the

path traversed to that point. Thls reversal by messages that

beyond the point of the two fajlures will

need to advance

result in a longer mean path. Even {if a closed form -

expression for the mean path length could be found that]

the resulting

compensates for each possible failure pattern,

expression would be extremely complicated, and add little to A

the overall understanding of the network’s performance. The

e e

N combinations of failure patterns are numerous, because the

number of fajlures can range - from 1 to as many nodes as

there are In the network. Even 1f only two or three

,,,,,,, OO0 'g‘.‘.«'&',‘a‘.'m!.’n'«'&".‘.0.‘.'“.o S OOO ORI ARG MK %y l"n

FOELE TCRR TN KN OO S GEY IO UR Y Y LT] ¢ by ir g% ooe a's ¢’ 80 ad RN TN N

91

remaining good nodes can reach each other, theoretically,

there still is a mean path length.

e

Therefore, the approach to analyzing the spiral topology :
when nodes have failed is to compare the results for no
failures to the same size spiral network containing !, 2, or ¢
3 fallures. We also analyze the impact of the fallure of a
single, or several modules, on the overall network. A
o thorough analysis of the spiral network topology when)
arbltrary nodes and complete modules have failed, is found)

: in the next chapter.

Theoretical results in this current chapter are compared to
those obtained from simulation. The simulation model]l used
to generate these comparatlive results contalins approximately

2 2700 lines of C program source code (Appendix E). Spiral

networks containing 4 to 20 modules (16 to 80 nodes) were

i establlshed and evaluated. In every case, the common 1ink

T e fA 42 o

[speed was 19200 bits per second; 4000 messages were

% delivered to reach a simulated steady state condition; and 3
% 4000 messages were used to gather statistlics. Appendix B ?
3 contains more detalls on the design and implementation of i

this simulation model. And Appendiz D contains the Summary

of Simulation Results for each run.

L N

'u’a‘x_'k‘.’h‘." 3‘.’9) .\"':’a'* \'2'1" b x'i’;’ta" WAy ?l“.\"‘j 0."!_-'4‘&'0‘_.“ n"'l".‘".,n’ln'!. (S o'l'-.i e.l.u'l -'i‘.’l‘-'l» AN Y \'ﬁ .""'\” _' A - . Ui X ». '

92

7.2. Theorem on Disjoint Paths

fdi it i,

THEOREM 1: In any size spiral network with no failed nodes

or 1links, there exists four disjoint paths between any

Rl o urry

source~destination pair.

Proof: In the spiral connectivity scheme, every third

Wi . L e

module |Is threaded together top and bottom in a clircular

& fashion. Nodes on the front end of each module are connected

fenf™g”~agar

K to the nodes on the rear side of their 1link module. This
pattern results in two spirals of equal length: one on top

and the other on bottom. Slince these splrals are circular,

o P

-

the four disjoint paths that result are 1) top spiral

traveling to the right; 2) top spiral left; 3) bottom spiral

' X
3 '
K right; and 4) bottom spiral left. \
! 'y
Q.E.D 4
i
$ As an example, conslder the seven module, 28-node network J
<y

u (figure 5-4). Using the source-destination pair 5 -> 18, the

four disjoint paths using base 10 numbers are:

-

520> 21> 8> 95> 24>25> 12> 13> 0> 1> 16> 18
5> 7> 22 % 23> 10 > t1 > 26 > 27 > t4 > 15 > 2 > 3 > 18

o > =

5> 4> 17 > 18

.

5> 6 > 19 > 18,

- R N,
- -

e e
- - -,

-
T

g ¥ (- ‘ > -y - &
OO OO B X O A O O O IR A O O S M S O DR S S S R I TN Rt R R RGN N G Y0

-

o

T

3%, 470 47y §

AP S LA I TS W W TR A A R A S R AR AR A I A TV y A Iy ‘2 4'2 $va 8%m $¢

93

7.3. Theorem on Maximum Path Length

THEOREM 2: The maximum path length in any size spiral
network having no failed nodes or 1links, measured in hops
under the shortest path algorithm, 1is equivalent to the

numper of modules contained in that network.

Proof: Define the following variables:

m = number of modules in the network,

n = number of nodes in the network,

8 = number of nodes on each of the two spirals, and

h = mazximum number of hops between the most distant

source-destination pair.

Since the minimum four module, 16 node spiral network is

expanded by modules of four nodes each, n = 4 *x m. Further,

since there are two equal dlsjoint splirals in a network, s
n/2. Consider one spiral. Since 4 *x m is always even, s =
(4 %x m)/2 1is also even. The maximum number of hops, h,
between any two most dlstant of 2m nodes Is h .= (2m)/2 = m.
For If h were greater than (2m)/2, then choosing to send the
message In the opposite direction along this spiral results
in a path shorter than h = m, Even If the source-destination
nodes are on opposite spirals, direct connection to the
appropriate 1ink node on the other spiral does.not lengthen

the maximum path. Thus

e

-

-

-

(e S ANy

R

i,

' . ; ‘ ; Lot » » ‘
X G R G R WL D o O e O e D L T D R e T TSRO

O78.97Y.

RERR S
RENERNONE

LY saate g . AN A\ NN TR TR TR AN Y

7.3.1. Analysis of Maximum Path Length

The following analysis compares theorem 2’s formula results

In the model, if the path

to those of the simulation model.

of the most recently dellivered message is lcnger than any

previous path, then thls length becomes the updated maximum
path value.
Case 1: m = 4

theorem: h=m= 4,

simulation: h = 4.

Case 2: m = 5
theoren: h=m=285,
simulation: h = 8.
Case 3: m = 7
theoren: h=m= 7.
simulation: h = 7.
Case 4: m = 8
theorem: h=m=28
simulation: h = 8.

A SRR W,

SR S O YTUT Y

YN RN

F -~
LR PC Jtp

v ey ey

i -
T

-
L

g Q.A

-.(Il."

g e

- .. o

-‘_-‘ . ”- :’-

T

>TEL

-

-~

E
N e

N

e e e e -

-
S

L~
7'

-

T a4

path length to

results are always

N

CI W EX R K UK,

S S R LY

N Y
J 7Y ,b. s ll‘o!.'l ‘:J‘t“'-# l;"l

m = 10

theorenmn:

simulation:

m =11
theoren:

simulation:

m = 13
theorem:

simulation:

m= 14
theorem:

simulation:

"

H

theoretical result of maximum

comparing the

from the simulation model,

that obtained

size of the spiral network under study.

R

identical. matteyr the

e W
» '}"F‘f\'\\\.‘\i“l,-mv

AN AN AR N R IO N AN LN o M NN KR LN RN ARy N N R L L T I O I OO TS T OO I TORTSA TUR TWX O "UR FLN ALK TUN UM
T ;

96

7.4. Theorem on Traffic Between any Source-Destlination Pair

b Theorem 3: Let Yij messages per second represent the average

amount of external traffic entering node (i) and destined

-

for node (j). Assuming that each node sends this new

traffic to all other nodes with equal probablility, then for

Ten e whe

; any size spiral network with or without failed nodes,

Py

n(n=1)IAT

Where:

wm

(Y

n = the number of nodes in the network,

S e

IAT = mean time (in seconds) between arrival of external

-J.Q-

messages to each of the four links at node (i), and

* " o
(a2
n

number of failed nodes in the spiral network.

-

Proof (this result is used in sectlions 7.6 and 7.10):
External messages arrive at each 1link with frequency 1/IAT.

Since there are four 1links attached to each node, the

VUV TN T e

arriv 1 rate of external messages to each node is 4/IAT.

-

Further, since each node sends to all other nodes with equal

probability, the proportion of this new traffic sent to each

I

node {s 1/(n-1). When there are no fallures, the average
amount of newly generated traffic sent from source node (i)
Y to destination node (j) per second is:

- 4 1 4

Y..= o=ee f =e= = cdicoacecme-

U IAaT n-1 (IATY(n-1)

ll
;’ . “u &".7‘,

A% - et “.c . .4 oa
e e N A A Ny e N A o

y (\ () b 8% Py "i o
".'f‘..':'f'.‘!'-'.h'f'o'& .lo'a_'l"‘ :.:l'.‘ih't' o W L 0'0 1'0 B (YA

s
s 97

In the spiral topology, there 1{s no global node status

\ information, thus good nodes will send messages to failed

" ones, not knowing that the destination has fatled. However,
Q"

o falled nodes send no messages. Therefore (n-f)/n represents
& the proportional impact that falilures have on externally
t

EX

$ generated traffic. The reduction in external traffic as a
0

B result of failures is | - (n - f)/n.

.?

ﬁ' Incorporating the proportional impact of failures into the
R

? above eguation, we now get

¥ 4 n-f 4(n-£f)

B Vij = oo ittt -

o (n-1)C(IAT) n n(n=1)CIAT)

» '.»‘.o.- ‘,‘"""{'.

7.5. Theorem on Expected Average Link Trafflc

é& 7.5.1. Introduction

W

:

o The previous theorem s concerned with the arrival of
o external traffic to the four links that comprise a node, and
)

$ how that new trafflc s distrlibuted to each of the remalning)
% (n - 1) nodes. The next theorem addresses a single (one of
o the four) arbitrary link at a node. The theorem result is
.&. an expresslon for determining the expected average amount of
;; traffic that 1|s sent over any arbitrary link. That traffic
% includes both neviy generated external trafflc and transient
3{ messages.

EA
LM 0 - , o [P -
RUROLEANRS) O AN W AL iy Of e O O W W A B N W X N O W W = .
46 &'",-".h&".l“i‘“""‘.b"tl 2;"!:'1’."5;“?'&"!.“.0 WL .I‘l!’ ..‘ J"g.lf:'... . & AR \ “ " .|.lu > -,.\' N ‘»I.l \\\\ \k' S » v

98
o Theorem 4: Let)\, messages per second vrepresent the

expected average amount of newly generated and transient

}h traffic passed over an arbitrary link (i). Then in any size
w4

o spiral network which has no failed nodes or links,

& 1

) A, = --- + 37583,

%) 1

& IAT :
\‘!

t.‘

‘GQ

*8 where:

§§ IAT = mean time (in seconds) between arrival of

f

X

jz external messages to each link, and

KD

4

a B = the average amount of transient traffic entering
-

48 any node,

* 7.5.2. Preliminary Discussion

4.:

ﬁ, If we start with some source node (i), then the traffic from

X node (i) to directly connected node (j) consists of new

? external traffic that enters the network at node (i) ’

% destined for (j), plus transient traffic that uses the link :

. between nodes (1) and (j)> as an intermediate hop. When this

; combined traffic enters node (j), it 1is joined by new

: traffic that enters the network at node (j), élus a portion E
of the translient trafflc that enters node (j) on the other '

; links tied into node (j). & portion of this new total

)

é amount of traffic then passes over the next 1link to node

‘D

(k), where the . process of combining new external and

~

transient traffic 1is repeated. This analysis suggests that

L]

‘ . ~ . .
.‘:. a' ’t' ‘ 'n‘ A"'\“‘\ ‘.‘ 't“‘\'.‘." ‘A‘. W%, “ 0, i'r OO0 W05, ‘...“’l‘. LY, '&l\& l.!'t’. LRt T 1 RN N

'5‘,“'3.,*\“"
st A

l, ‘ar, ,s. .»‘

99

tne average amount of trafflc on an arbltrary path increasecs
proportional to the path length. But since every node in a
spiral network falls near the end of the path from some
source node, we would expect this proportional increase in
traffic to be distributed uniformly throughout the network.
In the spiral topology, the path taken by an arbitrary
message is part of a tandem network that contains cross
links at each nede. Sc while transient messages at each
node joins the flow of newly generated trafflic, at some
point along the path, we assume that an amount of transient
traffic eguivalent to that which joined the path, will again
leave, and become part of some other path In the network.
Therefore, the reasonable assumption is made that the
average transient traffic (B) arriving at an arbitrary 1link
to joln newly generated messages Is a constant. This
assumption and discussion of the behavior of queues in
tandem that merge with cross links parallels the analysis of
tandem queues In [42], where the assumption is made that
transient messages move into a path at some node, and then

leave that path at the next node.

There are four unique cases that must be analyzed when
considering the mean traffic over a link. These cases exist
because we have four 1!lnks connected to each node. The
analysis that follows is based on a fully connected module,
using variables éefined as foliows:

Ai = expected mean trafflc (ln seconds) passed over

] 00 OO
LR ' 3 "«' W, o' 'l‘.‘ oo 'A"' 1';'1‘ ;‘. t'.'t’ a‘. e .\' 4'- t'. !‘1' ’t‘.‘\‘. t‘.‘u‘- \"’t‘. [\ ‘\‘ oK) n‘!‘n\.'l‘. .‘. o'“o‘. A ‘c‘ W, \ o "‘\'. l“'

eSS S

L e Ty W W BN T

- e e e
e -

. e

N

et

v e e w s
S

‘

PR L
NS MO NI

i0¢C)

any arbitrary link (i), ;

T = mean time (in seconds) between arriva: co¢f

4
fesd

external messages to each ¢f the four links at a

node, and

. A o g

B = the average amount of transient traffic per

second entering any arbitrary node.

T A~ e O B

In each case analyzed, the 50lid lines with directicn arrows

in figures 7-1 through 7-4, highlight the links that may

impact the traffic that helps form P The broken lines are

included to complete the module connectivity. Also, in each }

three links (with direction

of the four cases that follows,

arrows in the flgures) lead into the node, and one 1link

leads away from it. We arbitrarily choose node (1) as the '

source node. The values of Ays Ags and A, in figures 7-1 ;

through 7-4 represent the traffic (in seconds) sent from X

nodes (2), (3), and (4) respectively.

Node (1) sends to node (4).

In this first case (figure 7-1), a portion of the transient 3

traffic B from the external link 1is joined by the new

trafflc generated at the 1link feeding node (4) from node

(1), So the value of Ay s determined by the rate of newly

arriving messages to the node (1) to node (4) link, plus a

portion of the through traffic 8. None of X, or A5 is fed

to Ai’ since traffic sent to node (4) from nodes (2) and (3) ‘

uses the directly connected node (4> links. The amount of 8

RO O O T O IS MO X MMM NI M M M e Oa D s AT N M XM 00 A A L n S A B0 A SOOI WA

IR R R R SRR L RO L O R LT LR DL IR U L A

101

going to X; depends on how much terminates at node (l), and

how much is sent to nodes (2) and (3).

Figure 7-1. Node (1) Sends to Node (4),

Case 2: Node (1) Sends to Node (2).

In our second case, the value of)\; is determined by the

rate of newly arriving messages to the link feeding node (2)

from node (1), plus the portion of the through traffic from

Figure 7-2. Node (1) Sends to Node (2).

X i o . -) . RO :
£ 0T G RTINS T R L T e e S L N T S L R by

Again, none of Ajor X, is fed to i;,

B (see figure 7-2).

since trafflc sent to node (2> from nodes (3) and (4) uses

M ==

the directly connected node (2) 1links. The amount of B

golng to A; depends on how much terminates at node (1), and

how much is sent to nodes (3) and (4).

T >

Case 3: Node (1) Sends to Node (3).

Now, the value of A is determined by the rate of newly

arriving messages to the link feeding node (3) from node

(1), plus the portlon of the through traffic from g (see

o
Rt

figure 7-3). As before, none of \; or A, is fed to \;, since

traffic sent to node (3) from nodes (2) and (4), uses the R

directly connected node (3) links. The amount of g going to

Ai depends on how much terminates at node (1), and how much

is sent to nodes (2) and (4).

Figure 7-3. Node (1) Sends to Node (3).

OISO IEDRDOOOUE A, DN A n C\ CAN A MRS - A SPCTRR <O A ARSI
Ty U e 0 U e B t'..l"‘r."%’\‘ﬂ'h’i"‘d"‘ VK A SN o 0!.'04'&.-'\4 W DM .- (2 DN o £ SR 35 T T !0'0.0'0.

103

Case 4: Node (1) Sends to Distant Node.

Figure 7-4. Node (1) Sends to Distant Node.

In thls final case, node (1) sends to a node that is a part

. of the directly connected next (or previous) module. The

determined by the rate of newly arriving

value of | is now

messages to the link feeding the distant node from node (1),

plus the portion of traffic from X,, A3 and X, (A, =Xy =Xy

Mg =p). The amount of 1,, Ag» and A, that helps to form \; is

determlned by whether or not node (1) 1s the flnal

from or nodes

destination node for through

a message sent

(2), (3), or (4).

We now form mathematical representations of these four

cases, and combine them to conclude the proof of theorem 4.

RS T P P I P A R R R TR M 2R I SYO M R TN NN RN A, PR, OO

Proof of Theorem 4

Case 1: In this flrst case, B elther terminates at node (1),

(2), (3>, or (4. P therefore goes

or is sent on to nodes

to node (4), and thus helps form N> with probability .25:

= arrival rate of newly generated messages

A

+ portion of through traffic
{
A = ;;; + [Probability(g goes to \{)Ip

1
-== + .25p.
IAT

‘ (7.5.1) A

Case 2: Again, g elther terminates at node (1), or is sent

on to nodes (2), (3), or (4), The probablility of g helping

) to form \j is .25 as before.

Aj = arrival rate of newly generated messages

+ portion of through traffic

_ 1
4 Aj= === + [Probability(p goes to A{)1g
; IAT

1
(7.5.2) Nj= -=- + .258.
IAT

Case 3: This case is the same as the two previous ones: 3

either terminates at node (1), or feeds nodes (2), (3), or

(4) with equal probability.

A= arrival rate of newly generated messages

+ portion of through trafflc

AT Ty 8Ty ATy AT RT T AT 0 (1 0 ; { .
O K RN MM CR NN A M MUK R RN M NS M RMRMAN AN DU SSINONN ON S D IR OGROO O K

.
St TS RN O TR AR LA XA N A R A AV RN R RO TR U R UN DR U UN VY R UN UN UV U UN PO WY LWL WY IS RO OO B ol Yo% ol sop 9.6 /if &

W]
N
"'
l‘
t
105)
4
) .
N = === + [Probability(p goes to \;)lp <
IAT B
Y
1 ':
(7.5.3) A= === + .258. W
IAT i
‘t
i Case 4: In this last case, \, terminates at node (1) or %
. ;(
feeds Aj» Ajterminates at node (1) or feeds \j., and Xy i
terminates at node (1) or feeds ;. Each of these
terminations occur with probability .5. ;
%
"
\;= arrival rate of newly generated messages "
(J
‘ + portion of through traffic g
: 1 l%
) Nj = === + [Probability(i; orij orix, goes to A;>}]p ,
, IAT "
U
, 1 ;
: Aj = ===+ [P(X3) + P(A3) + P(X,) = P(XIA3) = P(AN1A,) ot
IAT o
A= === + [.5+.5+.5=(.5)(.5>=¢.5)(.5)=(.5)¢.5)1p .
IAT Oy
'l
1 R
A= === + [.5(3) - (.5)(.5)(3))P 2
: IAT b
] 1 1
; (7.5.4) \j = === + .758. g
) IAT :
:

Consolidating equations 7.5.1 through 7.5.4 for the four

cases and simplifying, yields the result we seek: J

)

&L '5

' 1 1 N
Aj= (=== + L25p)C.75) 4+ (=== 4+ 75P)C.23)

IAT IAT :

4

(N

0

.l

A AT R 1 DO . . . oo L A
CIE LN i‘:’v"’- [LI AN [\l a-'i'-‘l'u‘l.a.l’. i‘»‘.‘, l'-.l';‘l'u‘!'r’.‘n'l'.‘l'n‘l‘- I‘-‘l'o ..s.l.a.l.~.\'-.|‘o."o Nobis “I‘ OO AN AR N AU Q.nv‘.l.l.l .'0 ‘0 I‘o..‘;"‘t"';

- ——_
O JC R i)

A
o
LY
3
i
e
..

o T T T

©

PR T K TR

1’«'&’, AN A B w ¥ s L o ", -]
DRV NSO IO N AN lh‘\" q!i « l'-‘i",l‘- it . b l‘. DAY afily O l‘g ‘ ‘) N
A%, %, 0% §T ¥ 8% S N T B A N N .'u‘. AN R AN ...' ‘n . .‘ .“ &' X
S AT NI R G0 W,

o~ e

o

)

P T

-

- e e W

OOV OL QOO0 OO0 T { - Po: apn - -
AL LA LW USSR l‘,,»‘,_!.. l.. SACA l‘s,“n.l‘p '}, S ANH 5‘.J‘.,I‘-'l’c “.,I'c't'..l" l'-‘b‘o.l‘» W O‘c‘l’: Ve 1% 1NN .."; ' . ol ‘n'I‘Q A - ' \ ‘ ‘

107

7.5.3. Analysis of Expected Average Traffic

Table 7-1 contains analytical results obtained from appiying
the formula in theorem 4 to varlous size splral networks for
selected values of P. For each spiral network analyzed, the
overall system wutlllzation was first found by ignoring
transient traffic (p= 0). Then we assumed that transient
traffic jolned newly arriving traffic at a rate of .05
nessages per second (f = .05). The value for the arrival
rate of new messages (1/IAT) was also .05, since IAT = 20
seconds. The column in table 7-! which reports theoretical
system utilization (p[) contains results obtained from

applying the formula to find A; based on g and IAT.

Assuming the size of a newly arriving message is chosen from
an {nfinite population that s distributed exponentially
with mean {/p bits per message, and that arrivals follow a
Poisson arrival rate with mean \{, a very good approximation
for pp at this polnt is the mean uti{lization for a single
link (based on i; calculated using theorem 4), multiplied by
the mean path length (L) as found in the simulation model
(1.e. py = \ly/nC) [42]. Theorem 5 and analytical work in
section 7.8 lead to the exact expression for Py - Section
7.8 also confirms ‘the accuracy of the current approximation.
The last column .ln table 7-1 contalns the measured

utilizatlion found in the model, calculated as follows:

Rl LI RN NE R RN AR RN LT VT Y3 Pttt a0 e a T nT ¥yt SRV et da it 026 Fa¥ 0ot Eat Gt Hat 0ot B 878 000 .40 8% 8% 2 2% A¥a’ "0 ¥s Ala " 9228

108
average time all links are busy

Pm
total network time

Notice that without ezxception, wher transient traffic |is
lgnored (= 0), the theoretical utilization (p,) is closest
) to the measured result (pm). Even a small amount of
transient traffic (8 = .05) causes theoretical utilization
to surpass the measured values. In concluding this analysis
based on the above theorem, without exception, the analysis
. of theoretical versus simulation results confirm that

transient traffic can indeed be lgnored when calculating the

!Q
2 system utilization under the assumed <conditions. The fact
1y
b that when B = 0, theoretical results are closest to

simulation values, supports the long accepted assumption
0 that for analyzing M/M/1 gueues connected in tandenm,
transient traffic can be ignored (42]. Ignoring tréﬁsient
trafflc 1is possible because the rate at which transient
e, traffic flows into that tandem network eguals the rate at
W, which it flows out of it. So while the formula in theorem 4

s a preclise representation of the expected average trafflc

arriving at an arbitrary link, a more simple procedure that

.

is just as accurate (s to use the rate at which new messages

arrive at the links, ignoring the transient traffic.

PR R

' ‘.H‘.n"v'a.-(a..'l.;..' KA RS AR]S .'0';’! HhE .b'l.o t‘..b_'.. v .0"! .«’.a. ' «0 " M‘ J] Gy ! REN -"‘ H ”’ " '}'" *‘ ~ . I ‘-')I ’\’ " N |-‘

109

Table 7.1. Average Traffic Result Comparisons.

modules J¢] Ai PI Pm
00 05000 04984
4 04820
05 06875 06853
00 05000 06043
5 .05890
05 06875 08309
00 05000 08078
7 07972
05 06875 11107
00 05000 09060
8 08849
05 06875 12458
00 05000 11166
10 11286
05 06875 15353
00 .05000 12308
11 12104
05 .06875 16923
.00 . 05000 1442
13 14673
05 06875 19834
00 05000 15312)
14 .15060
05 06875 21054
00 05000 17561
16 17136
05 06875 24147
00 05000 18580
17 17796 ;
05 06875 25548
00 05000 20473
19 20226
05 06875 28150
.00 . .05000 21251
20 N :21263
.05 .06875 .29220

3 W, Je] ® LT ¢ w: { e " g
n-.l.o.. &5, l.-s l‘,‘o U \ ~ .‘ ¥, * ' pLln > '~ e, ‘\'N u.l 4
) T TG B G Bt W R N

110

g e

: 7.6. Theorem on Total One Way Link Traffic

7.6.1. Introduction

T -

In the previous section, we presented as theorem 4 an

expression for calculating \;, the expected average amount

of external and transient traffic (in messages per second)

passed over any arbitrary link (i). If we form the sum of

all the one way \;’s 1In a network, then we arrive at the

S R

total one way link traffic in that network. The next

e e

theorem provides an alternate egxact expression for finding -

-~ i’y

the total average one way link traffic. Theorem 5 will be

applied in sections 7.7 and 7.8.

Theorem 5: The total average one way link traffic (X)) for J

any size spiral network having no failed nodes or links, is),

4 n {E -1 %Pl f
A = ====ee== {=[5m-4 + O (7m-141-3) + <L (m-21-13) + mn}, \
[AT(n=~1) 2 i=1 i=1 g

, A Ay e E

where:

arrival of

IAT mean time In seconds between

external messages to each link,

n = the total number of nodes in the network, :

'
m = the total number of modules in the network ¢
.

T e e -

(m = n/4).

"<

y g’ o
AT XM AN AT LAl Dl

ORI N SR NCIN MV RATRM N T O ,g?l,._l.l!‘.b,!.c.qc. gl, A Y

- o o

T I e

B S

1
1
)
)

OO OSOAIOIR Y o™ Ta¥ IS ™. T - h LN LV L RN -~ LY . Rt . ' A B . e e A
AN ‘.I'O'-.l"'l'n‘l.-.l.t DA VSIS e a ’»‘l.u.l'u (LA W A N Ax L AN KON N .a.‘a.&.'.l‘o. 3 .p. '.." 'g,“.‘ ". A 500 o .j’.j"

1l

~3]
.

m
t>

Preliminary Dilsczusstion

We now know from theorem 4 that transient traffic entering s
network of tandem gqueues can be ignored, since the flow rate
into that tandem link equals the flow rate out. Even if the
transient trafflic was not ignored, on the average, it would
be constant, and thus could be removed from computations.
The theorem just presented as thecrem £ pertains to eyternal

traffic only.

There are three types of links in any size spiral network:
Type 1: Gateway Links - These 1links <connect the
modules together to help form the top and bottom
spirals. Examination of any size spiral nezwork

topciogy guickly confirms that there are (n) Type I

©

links in each full-duplex spirai network. So the

way total of Type I links is n/2.

Type II: Translent ULinks - These links form bridges
for the gateway 1links, and complete the connections
that form the top and bottom spirals. Type Il links
are the top and bottom connections in each module.
Again, examination of any size spiral network topology
conflrms that there are also n/2 Type II links In each

one way spiral network.

5% 25

e e

I -

- .

o

- o~

- e

-

i .

-

BRI D R R R T R R T T . A T T

112

Type 1III: Crossover Links - These links, along with
the Type II Transient Links, fcrm the individual
modules. The crossover llinks cause a change from one
spiral to the other. The number of crossover links in
any full duplex spiral network is gquickly verifiable to
equal twice the number of nodes present in that
network. Thus, there are (n) Type III links in each one
way spiral network.

The total number of one way links 1in any size spiral

network, then, is the sum of these three types.

The external traffic 1load passed over a particular link
depends on the mean message arrival rate to the 1link, and
whether the 1link is of Type I, II, or IIl1. The heaviest
links are of Type I and II slnce they form the top and
bottom spirals. In an error free network, only links
directly connected to source or destination nodes perform as
Type II1. 1In other words, a message uses a Type III link
only at the beginning or end of its path. As it moves along
the spiral, the message spends the remainder of the
transmission time on Type I or II links. Let X7, A;p and
A1iT represent the total number of combinations of each type
of link in any size spiral network. Recall from theorem 3
in section 7.4 that Yij in messages per second, represents
the amount of new external traffic entering node (i)

and destined for node (3j). - Then the amount of one way

-~

N

o~

T

TN &

S -

= - -

e S]

}

|‘ a I\ ' - - R . N i i N N , X

R AN AL ." - ¥, "~ A DU 't..'- ‘ ..u..‘ , ‘. l a M NN .h !.I . S W 1 ! \"" \1\.\ SR
- ‘I - L -

108 @

WERTANS LR PR AT LI L RPN LR G U LR LA R LR A R R T A TR R AL TR AT R R e AT AT

113

link traffic on each of the three types of links is defined

as follows:

TYPE I: Y iM1= Ay,

T Py T T

TYPE III: YU)\ III"As.

Proof of Theorem 5

7.

6.3.

For a Type I 1link, {f one listed all the possible one way

traffic comblnatlions (Yjj’s) for each source-destination

K pair, the total number results in the following pattern:

N "

. = =+ (m=0) + 3(m=~1) + (m-2) + 3(m=3) + (m=-4) + 3(m=5)...

w‘(2

W m

:2« m l’?-]'l l?-"l 0

) = - -+ (m=21) + 3(m=2{-1), or ‘

i 2 i=0 i=0 I

i " Fq-l

t, Ap= - =+ '§ (4n-81-3),

B 2 i=0

B0 g
Where: :

m = the number of modules in the network, and

X [1= the ceiling function. [m/2] = m/2 if m is even,

e

else round up to the next integer.

all the possible one way traffic combinations h

Listing

(Yﬁ's) for each Type 11 source-~destination palr results

in the next pattern:

-

-
"

-
- -

n
=+ (m=0) + (m=1) + 3(m=2) + (m=3) + 3(m-4) + (n=5)...,

2

DX

& . -
O 3 A VAT VAT AL LA 7 A A (R TR VL L AL A AP S ™ X ™ R =X~ - - -
AN) AT NN v(‘-f‘ (X O '-F“ " .” " e

s N: ara gkt dme Wet wa 1Y Bt 7av fat @t @t Fat faf g8 b V3. 609 800 Hta $T0 K8 4" Vg 8% bia Bts A¥a AVa AV 8Ya AV, AV ANL T, 2V gt BT P ——

114

m Eﬁ-l Eﬁ&l
N = - 4+ I 3(m=21) + (m=21-1).
I1
2 i=1 i=0
Where | Jis the floor function. L[m/2) = m/2 1f m is

even, else truncate the decimal portion.

U

)
B And flnally, 1t is quickly verifiable that the number of one
&

. way Yii,s of Type III is exactly equal to the number of

modules (m) in the network. From theorem 3, with no failures

o (f = 0), the average amount of external traffic from source
@ node (1) to destination (§) is Y;; = 4/(IAT(n-1)). Therefore
;ﬁ the total average one way trafflc is: ‘
R (
¢ ,
¢
@ n/2 n/2 n
e Moo=y IAT+ YZAIT H Yi3 ZTAIII

1=1 =1 I=]
Wy
i, n/2 n/2 n
= Yyl TX1 + IXM71 + ZIAIID
" " 1=1 =1 =1
. n
:E = Yij[;()‘I + A1) + narIql
3
e 4 n -1 @}-1
‘ A= ———-c-ac{-(5m~d4 + £ (7m-141-3) + (m=2i=-1)1 + mn}.
- IATC(n=-1) 2 i=1 i=1
)
0' u
b N
8 Q.E.D. 5
] .)
" ~
i
i 7.7. Theorem on Mean Path Length
l'
'0‘ -
S THEOREM 6: The mean path length (L) In any size spiral
: network having no failed nodes or links, and measured in E
1,9
2,4 u
ﬁ' hops, |s glven by :
i .
b:;
K t

AN

B N R N T LI L A S N,
WA AT ‘= ¢

M XX

115

(2h + 1),

maximum number of hops between the most distant

source~destination pair, and

number of total nodes in the network.

Proof:

From theorem |, there are four disjoint paths between any

u source-destlination palr. Starting at an arbltrary source

there are four possible links for the first hop. Fronm)

node,

any intermediate

node (i), there are also four options to 2

1Y links, the

form the (1 + 1)st link. So for the first (h -

mean number of hops is)

Pl XA

h-1 4
(7.7.1) S - .
i=1 n-1

y e o e <

-

-
-

Now for the last link, there are only three remailning links,

-

since two directly connected 1links are tied to the same {
]
L]

- -

destination node. Mathematlically, this last hop s

represented as
]

e e
-

3 \
(7.7.2) --- h. '
n-l ¥y

D

Combining the results from equations (7.7.1) and (7.7.

form the welghted mean path length, where the weight

number of the llnk In a path.

-

0

“'«"’-""n‘-h‘. .h“h‘ 'i"'n“_ﬁ h l‘!..‘!.‘.:“‘?‘l p A " o ‘ AN .h . e ' e T Y M MU Y . - . . : A v I T " » “ Mo "y A e P » \

M RU AU N MR NUNMUIU Y R U Y

116
h-1 4 3
L e== | 4 === h
i=1 n-1 n-1

1 h-t

==~ [= 41 + 3h]
n-1

Now, using the well known

[2¢h? = h) + 3h)

{2h2 - 2h + 3hl

(2h + 1)
Q.E.D.

As an example of how the theorem 1is applied, consider the
7-mnodule, 28-node spiral network. Arbitrarlly choose node
(0) as the source node. The four disjoint paths are:

from source

ONOAMONON AL """"".‘""'".“..!"."~l“'"‘"-".s’!‘4' A.‘;Q UOIAY '-'o! . OB R U WK XN WX \. alt X L -..-*; . '. R0\ N

AN T U T I L UMY DRI LONT LR S UIT VR R A T

-~

117

- .

: 4 4 4 4 4 4 3 :
L = ==%k] + @=x2 4+ ==%3 4 ==%4 + ==x5 + =axf + ==x7 Y
27 27 27 27 27 27 27

L = 3.88889.

"
~
-

LIS gt Y

: Using the formula directly with n = 28 and h = m

‘ 7
; L = =---- [2(7) + 1] = 3.88889,

28-1

L.

Analysis of Mean Path Length

Recall that IAT is the mean time in seconds between arrival

: of external messages to any arbitrary 1link in a spiral

network, regardless of size. Therefore external messages

of 1/IAT. Since each node has four

the rate

arrive at

connected links (see chapter 5), the arrival rate of

o

external messages to each node 1is 4/IAT. 1If we define Y to ﬁ

be the total number of messages per second entering the ¥

v - -

entire network, then Y = 4n/IAT, since there are n nodes in

o the network. The one way mean path length is therefore the !

ratio of the total average one way link traffic (A), to the

average one way offered load (45]. Letting Y’ = Y/2 =

2n/IAT, the mean number of 1links traversed by a typical "

message ls the ratio \/Y’. But from the previous theorenm, '

g g g i)

we have a closed form expression for the mean path length.

S -

Our current purpose is to compare path length values !

obtained from three independent approaches: 1) the ratlo

i AN/Y’3 2) the eqguation from theorem 6; and 3) the measured

o4

OSSO HAOSLSORNBD) $, It et h [T RO ‘I
B A AN A A TR A T UL U A N e AR AR AR DO KM LN R OO M SO e N o’t'n..l'o‘l‘:’

result from simulation.

g Table 7.2 summarizes path length results found using these
'+ three independent approaches. The values of A\ in the second
. column of table 7.2 are found by using theorem 5. Y’ =
. 2n/1AT, where IAT = 20 seconds. The column L, is found by
using the ratio described above (A/Y’). The 5th column (L)
contalins theoretical results from theorem 6. Note that the
columns Ly and L; are identical, as they must be {f our

analysis 1s accurate. The last column (Ly)) contains the

N values found by the simulation model. In the model

b total number of hops for all messages

Lm-
i number of messages

it Notice that without exceptlon for the 12 networks analyzed,

the measured result (L,) is extremely close to theoretlcal

-
-

expectations (L; and L;).

PP
T

IR - S
Wl WIOAD D) T OOV W ‘ I W ‘ :
00T V0 b RS R S e e W, foite e et ety .l.‘.‘.‘!h LN N ?‘A..h !I- 08 !l. oM b . X4 .!'. L

IR I L RTINS SRt I T R R N TN R R U P L R R L T R R T A R O T T O T O R TR U TR AT O TN AT AL

119 ‘
Table 7.2. Mean Path Length Comparison.

(in number of hops)

~ n A Y’ Ly Ly Lm
4
16 3.8399 1.6 2.4000 2.4000 2.3923 ;
2 20 5.7894 2.0 2.8947 2.8947 2.9005 :
f: 28 10.8889 2.8 3.8889 3.8889 3.8772 ;
32 14.0386 3.2 4.3871 4.3871 4.3488 1
g 40 21.5384 4.0 5.3846 5.3846 5.3597 ;
44 25.8883 4.4 5.8837 5.8837 5.9078
52 35.7885 5.2 6.8824 6.8824 6.9240
; 56 41.3381 5.6 7.3818 7.3818 7.3497
K A
, 64 53.6380 6.4 8.3809 8.3809 8.4295 '
¢
68 60.3881 6.8 8.8806 8.8806 8.9185 :
" 76 75.0881 7.6 9.8800 9.8800 9.8270
il 80 83.0376 8.0 10.3797 10.3797 10.2005 :
+ et ittt ettt ittt ettt b
. :
W .
3
i ¢
§
o %
9,
K]
[} J
. 2
y 0
R -
R .
* L
>]
t \]
A
LY L
»l
[y

» 0 [y I s »
A G R R R R T e IADAODOMON N X e Y ol N \‘. NN

L o e -

120

7.8. Analysis of System Utlllization

This section dlscusses the calculation and comparison of the
mean link wutilization (p), {in any size spiral network,
regardless of fallures. We first find exact theoretical
values (pt) by using theorem S to find the total average one
way link traffic (\). These results are compared to a
shorter appreximaticn approach (pa), and to actual measured

values found from simulation.

Assuming a Poisson message arrival rate with)\ messages per
second arriving on the average, exponentlally distributed
message lengths with mean 1/4, and inflnitely large buffers,

the following expressions can be used [(45]:

Theoretical: % = --, - = mean message length,
uC M
C = ZCi, total network
capacity in bits per
second, and
A= total average one way

link traffic.

Approximation (as defined In sectlion 7.5):

A
pa = --1— L'Tn’ kl 1/IATO
»C; .
1

link capacity {n

-

bits per second, and

LR S T

n 0 . Ry O - - - 5, -, .
."!,:,'5«4.! oty -'tt‘.l..' ,.‘L Ql_n \..'!.. l,s".q.ilg D‘.‘ﬂ_.'l.u‘l_..\ PUSAY 1Ly _Q'l.o d‘ o".n‘.‘,n'l -’ \ 0 S ¥ .'| ~ ~ """P ' () P" ' ‘\‘ -'T‘:.'K' h

T

> e
Vo e

-
-

"o
P

S
Pt

-
& e

" T ."—;f

s -
- -

4
RS W W AW (RO Q4 (o ; s
ORI AU A R A O ORI AL N o e B N Y T A Y G AT . W '!“ e

.
-

121

Lm = mean path length.
Simulation model:
average time all links busy

total network time

Table 7.3 summarizes these results for the 12 spiral
networks used throughout our analysis. The values of \ used
here are from table 7.2. Notice how closely the
approximation (py) is to the theoretical wutilization (pl).
This is the confirmation promised in section 7.5 on the
goodness of Pa- The high confldence in our model 1{s again
confirmed as the values found from direct simulation,

without exception, are extremely close to the theoretically

expected utllization.

’\'y\\"-“f,'\-ﬂl

L P T AR DA AP SN L WL T SIC AP PR SRR LN LM TR O ORI VAR A N AR AN - T TRTOT: . 9 8 0 f¥m §5y &

122

! Table 7.3. System Utllization Comparlson.

m C Py Pa ’m

4 614400 .05000 .04984 . 04820
& 5 768000 .06031 .06043 .05890
2 7 1075200 .08102 .08078 .07972
E 8 1228800 .09140 .09060 .08849
; 10 1536000 11218 11166 .11286
; 11 1689600 .12258 .12308 .12104
. 13 1996800 .14338 . 14425 . 14673
f 14 2150400 .15379 15312 . 15060
§ 16 2457600 .17460 17561 17136
K 17 2611200 . 18501 .18580 17796
§ 19 2918400 .20583 .20473 .20226
g 20 3072000 .21624 .21251 .21263

- — o
It D e e w

' -

-

o -

S

.
.
N)

L U
3

-~
Y

A G

.

A 7

. g e

el e L
- - -

W
¥
1

L N] Ty 4 NSPWLSI UV IR U TRARAR) N KRN AN U WL FEVEEA AL 2828 a0 8Ya 8'0 AYA B AL R0 kot B9 Bad £45 825 a° Ha°

123

7.9. Analysis of Mean Queue Length

This sectlion defines and compares the theoretical mean gqueue
length to the values found using the simulation model. Let
E(n) represent the mean queue length in any size spiral
network. If we assume a Polisson message arrival rate with X\
messages per second arriving on the average, exponentially
distributed message lengths with mean 1/u, and infinitely
large buffers, we can use the results derived in [45]) for
the mean queue length computations:
1). Theoretical mean queue length based on theoretical
utilization (pt 3
Pt
Ett(n) = ;-::;-, where ¢, = A /uC as calculated
in table 7.3.
2). Theoretical mean queue length based on simulation model
utillization (pmp J:
’m
Eun(n) = I-:-;;; where Pm is the measured result
from simulation as reported in
table 7.3.
3). Simulation model value calculated directly, {ndependent
of py; calculations:
sum of the average of all gueues

Ep(n) = ==cececcccncnn cemcecccecne- ——e-,
nunber .f messages

bl O — o
Vo 0.0 L0 T R N R e B e N N T, -‘

Pty ey —ay —

-

LRI AN W N W A TR RN T WL U WA Wy P oS T, TN CWAN 10 B Sl Yo@ Yol 428 dad wab 9ab iad iaf vt Ul s gl ¢ah ta i U Vabomat ei8 ok gV Wal - ub s i

124 7
" In this 1last case, after each message |s dellivered, a
snapshot of all queue lengths is averaged, and added to a
N running total. When the total number of messages used for
i statistics has been delivered, this sum of queue averages is ‘
; divided by that total number of messages used for
R statistics. (See Appendix B for a discussion of the \
simulation model). Table 7.4 summarizes for comparison the

iy mean gueue length values found using the three approaches.

e While the results for the mean gueue length are consistently !
close for theoretical (E; (n)) and model (E,,,(n)) systenm
utilization wvalues, {n every case the mean gueue length :
results from simulation (Ej(n)) |s conslistently smaller. I
¥ Notice 1in the table that as the size of the network

) Increases, Eq(n) approaches the theoretically expected

S —ar—

B values. Eqn(n) is much less than the theoretical
expectations for smaller networks because of the common
X parameters selected for use In all networks. When the
ﬁ network contains only four modules (16 nodes). these common
parameters result in the highest number of empty Qqueues.

The common link speed 1Is 19200 bits per second, with

<" -
T)
-

messages arriving with frequency .OS'messages per second.

The mean queue lengths Ej(n) were found by first including \
the empty Qqueues {n computations, and then by excluding]
} these empty queues. Simulation results confirm that when
empty Qqueues are removed “from computations, without s

exceptlon, the values of Em(n). exceed theoretlical

S iy
,l-

N

W T W,
»

N

a8 Gl Gl

¥, - N - - - - . - Ay
g [A 1 A N 3 - " . . ~ [P
I A S e N O DG L DO MY N N w x n pp p N ey ™

' 0,070,000 0 a0 Pl 6.0 8,80, 0 0.8 4.8 * vy g¥p avg-gt 12’0 20 20 2% 8 4 10 8% 2"h 1% e, Saca Uyt hav Bav fp et fn tav a8 dav @a0 Bat Bt 0.0 8a0 0.4

125
expectation. When these empty gqueues are left {n the
computations, as the mean path length increases (because of
an lncrease {n network size), the number of empty queues
decreases. This decrease occurs because there is a greater
chance that a message must wait for the transmission link.
The increase in mean path 1link explains why the values of
Enfn) approach the theoretical expectations (E; (n) and

E;m(n)) as the network gets larger.

Table 7.4. Mean Queue Length Comparison.

m E{ (n) Eim(n) En(nd
4 05263 .05064 00483
5 06418 06259 00947
7 08816 .08663 01909
8 10059 09708 02436
10 12635 12722 04999
1 13871 13771 06076
13 .16738 17196 10231
14 18174 17730 11078
16 .21153 .20680 15505
17 22701 21649 17986
19 25918 25354 22606
20 27592 27005 26373

- D Gh S EE e Y R G AR GD Gn TR Ee N SR D G G S G L OP ED En D R P R D D N R Gr v WP GRS v @ Sy D A M D S D R SR W

......

- —ax—u gl

o e e Ae

R I e

-

R R

S e

A
s
\
A
)
)
[}

!

ST PGAR TR AR R AR RN AN L N AR TR AN TR RN g e \J A0 R A 8. Rk et bt e aadn ats ath ats a'R 2D 4'D & M AR B .

126

7.10. Analysis of Mean Network Delay

We are now ready to calculate and compare the time that it
takes for any size spiral network to deliver a message.
Assuming Poisson message arrivals to an arbitrary 1link (1)
with rate néssages/second, exponentially distributed
messages with mean length 1/p , and infinitely large buffer
capacity, the average delay in seconds incurred by messages
at the ({)>th link is [451]:
1

(7.10.1) T, = =ccnax=,

BiCi= Ay
This result Invokes Klelnrock’s assumption [(46] that the
operation of individual nodes is independent of each other.
This assumption 1Is approximately valid when the overall
system utilization s less than .5000. The highest
utilization of any of the 12 spiral networks simulated and

analyzed 1in our research was .21263 (see table 7.3 for

confirmation).

Based on equation 7.10.1, the total overall average one way
delay for any slize spiral network is deflned to be [(45]:

1
(7.10.2) T=-=- ZNT,

13

Y i

where Y’ is the average one way offered traffic load. In our
case, since we have three types of links (Types I, II, and

IIT), the overall delay equation T can be modified to

c-'--o‘-o.

- J-...’ -

s

W)

i . e . - I - - . I
OO |.A".a.l‘:'hfﬂl,n'ij"..‘h»’l.i'i,.‘l,. \.'r?.‘ o ,Q..Al..,. ,..Q oW Pt .‘ ~ .'\F &Y Ny - '\'. \ " » *"‘" G '$'v-\w\f\' N

MBS SR AP WA TS WL S I U WU U ML TU U U R VO WU U R P N U U R VU T T TR s O YT T o Oy e

127
reflect these‘types:
1 n/2 ‘ n/2 n
T LIt EoeTir v SadTirple er
1 n
(7.10.3) T = ;: [;(xlTI + ApTrp) + nkBTIII]'

where SRRV and \3 are as defined in section 7.6.2, and

1
T = emoeoeomoomwae
I »
BiCi = M
1
Toy = =cccmeee-
1T *
KiCi = %
1
y SR
III
I chi - \3

Table 7.5 shows the theoretical results (in seconds) of
applying equation 7.10.3. These values (in the column
labeled Tt) are compared to the delay values found in the
simulation model (Tm). In the model, the actual delay for
each message is <calculated and added to a running total.
When all messages used for statistics have been collected,
this delay total 1s dlvided by the number of messages used.

(See Appendix B for a discussion of the simulation model).

WSS AL

AN OO A KON RCAN R) :
240t 00 Tt s B 8 O o T o T o g 0, e, 8 e o o e L R g e

PN, 13 MULK UKL KN AURTAR TN YO8 IO UM

Bt e 0% e 0. ¢ ekl

Table 7.5. Mean Network Delay Comparison. A

(in seconds)

2.

2.76750
3.10376

3.83463

4.23261

16 5.10178 .63168

5.57783

6.62851

7.20997

P
e e -

.

e o

.................

LI I ot &g e NN IR WITEAS A RAR A\ T RN \J Yy £ TR R et Bad fal Aas Wt R TR TR . ' \ . .4

129

i 8. ANALYSIS OF SPIRAL NETWORK TOPOLOGY UNDER FAILURES

8.1. Introduction

ol Fallures analyzed 1In this section range from a single
arbltrary node, to catastrophic conditions where complete
modules have failed. Conclusions drawn are based on two
approaches to analysis. 1) Simulation results were analyzed

¢ and compared to theoretically expected values; and 2) The

e

spiral network threading pattern was thoroughly analyzed.
) The first part of this chapter addresses arblitrary node A

failures. The last part 1is the result of analyzing the

" network threading pattern to determine the impact failed

i)

m modules have on performance. Appendix D contains the

.

) i
ﬁ- Summary of Simulation Results used to draw conclusions based |

X on model analysis. s
¥

We conclude that failure of any arbitrary single node (or a)

n few arbitrary nodes), has minimum impact on the operation of]
% remalning good nodes, Even catastrophic fallure patterns ;
ﬁ possible through Intentional human ‘Intervention, may not
ﬁ completely disconnect the network. Although the 7-module,
% 28-node spiral network is used throughout, results apply for a
h any size spiral network. The spiral network expansion)

o algorithm subsumes the 7-module network as a larger network

i1s bullt, thereby causing the results found for 7-modules to 3

"' ;
]

~ AN

1 % - - p -yt " r- - v : r :
OO AT OGITRU T M e MM MU MM e S MO MO Q’c X, ". *‘ AN V WA, 'l .h‘.(‘ hY, n) !'\ AN ..l '.ln 3 -.u. 0"

s W

- ome T
-

SR R R PRI X R R R S S T T R R R B L s R R R R T

130

apply to any larger spiral network.

8.2. Arbitrary Node Failure(s)

Failure of any arbitrary single node, or a few arbitrary
nodes in a spiral network, has minimum iImpact on the network
operations. As expected, the percentage of undelivered
messages due to this single failure is proportional to the
size of the analyzed network. The larger the network, the

less impact a single, or few failures have on overall

network performance.

Figures 8-1 through 8-3 graphically display the impact of
zero, one, two or three fatlures on 12 different size spiral
networks. All networks were run using the same input
parameters. The common link speed was 19200, 4000 messages
were delivered to reach simulated steady state, and 4000
messages were used to gather statistics. Message arrivals
followed a Poisson rate with mean A = .05 messages per
second, and the message sizes were selected from an
exponential distribution with mean (/p = 1000 8-bit
characters. Appendix B contains a detailed description of
the simulation model. And complete simulation summary

statistics are in Appendix D.

As expected, the impact of failures on mean gueue length,

overall delay, and utllization is inversely proportional to

TR

by a By 47,

ot

e s S,

Qe e e

w7 n e e P o

S L

WP IR R T TR S/ T W IR TR WA SR T TP PO AR TOR RO PO ey

0D

X

AL O

NS

-

<
-
o
c
v
3
v
>
L
o
c
c
<
L
=
A4

b & e
 a g

10 i1 13 14 16 17 19

)

(number of modules)
Figure 8-1. Mean Queue Length Comparison.

(failures (f) = 0, 1, 2, 3

PR EEY)

»‘,,. > " ¥ n R TN VY S VY S Vol W o o LA T A A 0y S R L R S L L 1 A
o8 ‘._)a*.‘q‘.'.‘,'x‘.\'\.,;'a ,'Q .';‘Ji IAMN .'4‘.'! o J ;’b,q ,o.. "I, X .,‘o'l.n.‘.}C.g X ...0 .Q ® " .0. KaZ C - Wiy () My X o X F~ ' - - ,\‘h"'\ ? v,

”~
n
i e
\]
P Q
. ¢]
? V)
¥ n
i =1
3 @
B €
. -
! [2o
3)
d]
c
o]
) Q
H v
t [}
y +4
¥
! X
S
[o]
3
P
R [13
y 4
R c
3 L]
3| [
=
3 -
L3
, - A .
[} - — . t — — +- * + * —

4] 7 8 10 11 13 14 16 17 19 20
(number of modules)
Figure 8-2. Network Response Time Comparison (in seconds).

(fallures (f> = 0, 1, 2, 3

T e S g B gLy A ¢ Oy N L W W ‘ L L R WL R A A - e e
B BN B B O A B A o o i iR e i e

N AN . ~ORY, W B

) L avaTath et i a%h a¥h Rt %8 %2 atE 2%h aVa aTA AVE 2 % AT ATE RYE 8T8 ai etk YR AVE at4 5'h 8¢ <2t a8 'B otz at o-s;“..--.~,',
1J

133 o\

23 T A
22 ¢
21 T
20 ¢
19 ¢
18 ¢

.01

17 ¢

X

16 4

v

v

15 1

14ﬁy

v

13 ;
12 1

(Probability That a Link is Busy:

A Ao S S —t " 'y e 4 2 a “‘

4 5 7 8 10 11 13 14 16 17 19 20 v

(number of modules) *
Figure 8-3. System Utilization Comparison. 'y

(fallures ¢£) = 0, 1, 2, 3 W

S OO DO N MO X OO AR N NN At SN MM O MNP, T NN M S Tt S TR BT AT b T

P A IR N N S S R LN MR NN K R A A X RN RN SRR R LN S LR U N I T LA AT TR RIU Yo ny

the size of the network. Of key significance is how close

; the four curves are for each of the attributes compared.

how

reflects little an additional node "
4

This

closeness

failure impacts overall network performance. Statistics used

to plot the curves in figures 8-1 through 8-3 are summarized

in table form in Appendix C.

T -
-~

Table 8.1 shows how closely the actual percentage of

[

’ undel ivered messages due to failures, as calculated in the

simulation model, parallel the theoretical expectations

(f,). To arrive at the measured percentage, the simulation

SErrr2ig

program simply counted the number of undelivered messages,

and then divided that result by the total number of messages

used for statistics (4000). The theoretical expectation (f,)

f is the percentage of failed nodes 1in each size spiral t

network.

ROASADADADAINNY) » by 8y y h ; hy ; ") g . N
R I I R o o N N O N N N O D I, Dt A M S D S N M D MDD M Yo TG
v S S SO G e T S A A A A A A ARCAGINCAY

T A N T O PR YL N RN B PR AR SN AR AR IR U Y. TR R UARTAARREN RS KA NI ARSI LY DN UW IR Y & U R T TN XN

135 !

Table 8.1. Comparison of Undelivered Messages.

e Percentage of Failures
‘.

5 10 2.59 2.50 5.24 5.00 7.68 7.50 :
1 2.24 2.27 4.30 4.55 6.62 6.82 '
13 1.85 1.92 4.07 3.85 5.41 5.77

& 14 1.85 1.79 3.71 3.57 5.32 5.36
R 16 1.62 1.56 3.14 3.13 4.55 4.69
o 17 1.21 1.47 2.89 2.94 4.65 4.41
o 19 1.32 1.32 2.64 2.63 3.85 3.95 ;

. 20 1.30 1.25 2.33 2.50 3.76 3.75

-
o m e -

e
e
-

X A 0 W DAL NAS PN - LR IRE AT W Y v, . N
MO e .‘-"“-"’!‘,’." A% S e ~'|.’| IO R M M ..'C A ALY MK SRR .J"\ A e -u ,n '\\\ > " .* o .u.c -]

R IR AT o gl cal vai Vel el Sab val e,

PRI R T R R TR TR L e

136

K 8.3. Fallure of a Complete Module !

Any single module loss stil]l 1leaves two disjoint paths to

all other modules. For example, consider the 7-module A

network repeated in figure 8~4. If module #2 is destroyed, P

the two paths connecting the remaining nodes exist along the

top and bottom spirals. Further, the threading pattern for

this failure case (figure 8-4(b)) quickly confirms that all

TR e b

remaining modules are still connected.

Pt)

- -

-
)

~

e -

a). 8Seven Module Spliral Network With One Module Kllled.

,.
-~
‘\.\ . //

Crvy]

! b). Seven Module Network Threading Pattern.

-
-

2

Figure 8-4. Complete Module Fallure,

» h AU RN o (R W 9 L} - . - NIRRT
. ‘.‘q""“‘ "“"-"“’\'x'l's W, l’c"'w.l'-’i‘-.i'- Wl t‘.‘i" Al N WAL RN * I.-‘l.\ NANS ‘ , (S . \,‘0‘ ol " - "") e

PSP I M UAPL RIS TSP WU WS Y

UK R AN TN AR RN L

137

Failure of Multiple Modules

8.4.1. Two Adjacent Modules

The fallure of any two physically adjacent modules, and an N

than the loss

is no worse

additional one two modules away,

¥ of the two adjacent modules. Further, there are still two

disjoint paths to all remaining good connected modules. For

again consider the 7-module network’s threading

example,

pattern. Shown in figure 8-5 is the case where modules € and

and 5 are still

7 have falled. Notice that modules {, 2, 4,

connected along top and bottom splrals. Notice also that b

p module #3 is already 1isolated from the four other good Y

modules. The four nodes comprising module 3 can talk to :

each other, but not to anyone else. So |f module #3 also

should fail, there is no additional impact on modules 1, 2,

4, and 5.

Figure B8-5. Threading Pattern With Twe ‘Adjacent

Modules Killed.

™
~
. A
R R O £ T e e B G e e e o S

P

p e e e

18 8y 1% Vs

RSP WU WU WV MU RN R N R YRR R AR RN R R R R R R R R R R R R R R Ty

138

8.4.2. Every Other Even/0dd Module Lost

The 1loss of complete network connectlvity among modules is
extremely difficult. For a spliral network containing seven
or more modules, even i{f every even (or odd) module within
the network falls, there s sti{ll connectivity between at
least two modules. For the 7-module spiral network, modules
i1, 3, 5, and 7 failing still leaves modules 2 and 6
connected. If 2, 4, and 6 failed, the module pairs ! and 5,
and 3 and 7 remain connected. The module threading patterns
shown in figures 8-6 and 8-7 are graphic depictions of these
cases. In both cases, connected modules are reachable along
both top and bottom spirals. In figure 8-6, the isolated

nodes on module #4 can still communicate with each other.

o Tl — =
-~ -~ ~ ~
X._ & XK x & X
Sl S~ -/_,/

Figure 8-6. Every 0dd Numbered Module Killed.

2, v 9,

v 4

o

o i

T I ST T W TG W L N LN M T SN 0 R T A T N N L R M R W WU WG i R I R O R R O T e

Y
)
i
139 '?
G
'
3
i
TS Io< :
~ Id o ~
1\. g\ 3 _ :(. 7)
\.\l.——s /’ h
—— ¢
;
{
Figure 8-7. Every Even Numbered Module Killed. 4
§
]
)
8.4.3. Catastrophlc Node and Module Fallure %
t#
A
»\
If at least one 1link exists to any module, then all nodes]
¢
that can reach that 1link, can also galn access to the %-
ot
distant module(s)., For example, consider the severe failure a
pattern of figure 8-8., The link between nodes 3 and 18 can ?ﬁ
be used by the remalning good nodes to communicate among :i
-
themselves. In thlis wunique case, modules 2, 3, 6, and 7, ! -
)
have failed, plus select nodes on other modules. Even in 3
this catastrophlic case, there {8 still connectivity among k:
acod nodes. N
)
Yy
%
w
o
A
))
8%
"

NOO0000 O N O) ™ WY R RN AR TR e Ty e OSSR Ry o v ‘o T
"’"""""""‘:"‘J -" WY “"n‘. u."a’. " . LAY, !J..\.-h\ A s '. A AN ’ ¥ "f- ’. WY, .‘f o y "(" ‘. Lo p‘_"" ‘5\‘. ~'~f y

.....

IR E AR R A T Y R R R U D VM UR A N UN I U U VLA T VT RY ol a Va0 2l Vi Wt ot a8 a8 R a s Wk N R Ak S Rk 2K %, o owey

140

S
&

-

s -
o .

X J
Y 4
3 ¢
» i
ki Figure 8-8. Several Modules and Nodes Killed. g
X 3
{ i \
i !
;]
r 8.4.4. Fallure of Half of Each Module .
K 3
) v
R «
o Failure of the right <(or left) half of every even (odd)
IN module, still leaves access to a partitioned set of good)
)
b modules and nodes. Further, these connected good modules .
(1
L/
' still have paths along top and bottom spirals. 1In the ﬁ
1 7-module case shown in figure 8-9, the right sides of each 3
‘: even module is destroyed. Notlce that modules !, 2, and 5 N
, are still connected along top and bottbn spirals. This s ﬁ
; also true of modules 3, 4, and 7. Further, if failures are iy
, Y
I due to complete module(s) loss, as long as there |Is ;
0 .
connectivity between at least two modules, there will be a)
! mninimum of two disjoint paths cohnecting these modules. Y
‘)
X ,
¢ g

!' - |
A 3

0 4 C : SRR ALY

2T TN R RN RE R ANP. R RRTA SR YU TR s XN INERNRANRAS ARNTER A RO A U UY N Y U MUY WU g A3 8 gt .5 BADN S S B Ed B §ab G2 Gy, Vo

> 141

Flgure 8-9. Half of Each Even Module Killed.

8.5. Summary

" It should be apparent from the above discussion that
. significant network performance impact is felt only after
Ae more than a few arbitrary nodes have falled. Even in
catastrophlic cases, connected good nodes still communicate,
s and therefore the spiral architecture tolerate fallure(s)
KN extremely well. Although certaln fallure patterns cause
K complete direction change, and thusilncrease the message
X delay, the signiflcance ls that messages stlll]l reach their
A destination even with the fallures. Some of the fallure
K combinatlons analyzed will not generally occur as a result
R of randomness. These patterns were selected to -‘demonstrate

o spiral’s extreme tolerance to fallures.

|
i..

| " - o . -
e SN NG YN .‘q ,l."‘ p N B MO M

< e

N W %,) o oy MYy T T v ¥ o M LI AL IFE "N 2% ¢ e,)
‘I‘r.‘ o -..- LU ‘;. \(N“ A0y -."\ ﬂ'\ lw » "‘ ~ \N -- a)‘

AP

° TR Ly s TR N T R T RS CRT Y MY LT LI L L A A L A L L L I LT LA L P LR L A 29 gV vat val ved agh sad vyw ¥, ~a o R wa) Sgl val u 7 . &,

142
As the number of fallures |increase, a point is reached where
a the delay becomes shorter than in the error free case. This

situation results when so many nodes and modules have failed

e e o

‘ that path lengths between remaining good nodes is shortened

~ consliderably.

-
-

Obviously certain fallure patterns are 1likely only as a
result of deliberate network sabotage. Even in this highly "
unlikely case, every pair of link nodes in the network must
X fail simultaneously to completely disconnect all modules,
; But even 1If every pair of 1link nodes did fail, nodes

2 comprising a module still have local connectivity, and

-
-l g A

} therefore, the ability to communicate. In the absence of a

sabotuer, the spiral topology displays an extremely high

Yy

tolerance to node and link fallures. For sure, the fault

L

tolerance of the spiral topology exceeds that of the X
3| traditional topologies discussed 1in chapter 3, and at a
N ¥
X small expense for duplication of hardware. H
1’ L4
: 3
.
: .
X "
N '
:! '
s
N i
) .
; ‘
o
N *
+

.._ -

. q _ W T i K ™ Y K < At L
- “'5"-"‘-"'1.'“‘«‘-'\‘a OV SOOI O U " M M X l'! %0 XN \\l’, ¥, 9, 'ﬁ 1 N ‘y'\'\‘")“\‘ Lt ’

ISP R A ARAR AR AR R AR RN AN A RN KUY WY RN VNV U U UN U LR O R VIR U MO RGO U R BT i
:

143)

) 9. CONCLUSIONS

D The six most important direct consequences of the spiral \

computer network architecture are the spiral topology’s 1)

- -

ease of expansion; 2) fast, on-the-fly self-routing;: 3)

S o M)
PR

e

extremely high tolerance to faults; 4) increased network
security; 5) potential for the total elimination of store
b and forward transmission due to routing decision delays; and '

o 6) rendering the maximum path length issue moot.

Based on our thorough analysis, we conclude unequlivocally

T e -~ -~

that the spiral topology is a major contribution to the
2 discipline of Computer Communications. Results in chapters
v 5 through 8 confirm that the spiral architecture is indeed
S easily expandable, highly fault tolerant, and self-routing. \
Also confirmed 1is the topology’s applicability to any :

general network environment. The architecture can be use to

connect computer nodes to form local, metropolitan, and wide

area networks. If used, this topology should prove to be a

ra
>
-~ "

o major advantage to the telecommunicatlions Industry as that
N industry throughout the world continues to evolve towards a]

" global Integrated Services Digital Network.

Finally, the fast, on-the-fly routing attribute affords a
! tremendous opportunity to expand the use of flber optics A

technology In local area computer networks. 4

K}
" _ ‘ i A A A 5 AL L o e a A A e oo : .
1 1 V3 e N P A T L S T L T IA AT AT)

144

B 10. TOPICS FOR ADDITIONAL STUDY

% The sequential listing of the following recommended topics
for additional study in no way suggests a prioritized
o ordering. The only purpose Iin enumerating these topics |is

for organization.

;: 1. Link Versus Node Fallure

g

oy

14 The results reported in thls research were based on the
i‘ analysis of wvarious size spiral networks, with and without
W

X fajled nodes. When a node failed, it automatically

destroyed all four of the directly connected 1links.

§ However, it is possible for a single or set of links to
g; fail, and still leave a node accessible. If individual links
% were allowed to fall, and the resulting topology analyzed,
§ the spiral routing algorithm should still operate as
;‘ designed. Intuitively, one would expect the impact of link
f fallures on performance to be less severe than when nodes
%j fall. Analyzing the spiral topology for arbitrary link
% failures should prove to be challenginé.

%

§ 2. Destination Address Varlabillity

3

2 Mathematically, .a study of the variability in the number of

nessages sent to each node in an error free splral network

]
o
\

)

\

%
[N

H
A ony .\ g s . W - W o . v } . . .) ‘
3.5 ¥ l.".... R .-"'n I-'!h‘.,h 1070 A% AN %,) N ‘.'\ T X ln‘..; '.5 N . .'q ST 8N, 0 N .,'l'-.’(' ‘\‘. M i ‘.n . ‘\l -. R 'I;"n ‘N‘.‘h‘"- { '.- “S.

uy v 5 gt i@t Ak B4 p"E ATE e wid AVE abH w8 5t UATSAVE a'B g7f at IRV R W W A N WY R LN UN LY U R T TN T U TR T e

145 ;
may prove interesting. Does the wvariability Increase ’
directly proportional to the network size, or is it fairly
b independent of size? Perhaps at steady state, the
variabllity in the number of messages sent to each node

remains constant, regardless of the slze of the network.

T e

R T

3. Variability in Number of Empty Queues

.

Agaln mathematically, how does the number of empty queues

oo “ee e e

-l -

vary with network size in an error free spiral network? We

o)

saw in chapter 8 that as the network size grew, the measured

-

? mean gqueue length approcached the theoretically expected

i results from the lower side. Do these two approaches f
Py converge because of a wuniform increase in gqueue lengths 3
% throughout the network, or ls the increase mainly limlted to 5
2 a certain type of link (Type I, II, or IIID)? i
¢ '
a 4. Circuit and Packet Switchling ;
2
: 0f Iinterest and significance to a potential Integrated 3
; Services Digital Network wuser contemplating the use of the 5
5 spiral architecture, is the study of the performance of the ’
3 spiral network architecture wusing circuit switching only,

? and a mix of clrcuit and packet switching. For example, the .
:ﬂ larger the network, the longer is the mean path for packet ?

! switching. Does this also “imply that the-mean circuit

" switched path Increases with network size? Or will the '

+3 |

f .
Vi Ay 04) A%y 4% #% N) LA W p > L
RO ;‘A'J'Q J A Q'l.i‘l,l'l..'i,;'l,. ..‘I..‘\,.‘i‘|'l,‘!‘,q’j.'!l‘ ,‘A Ly n . '.‘. ‘, ‘("

“

- PR R e . > |
AN R Ty T e i N

caB Vet AP Yah Kgh V2B Con Hah vakr 6,0 628"

DLy LONC LI (WA P L BRI LA Y AU N U

146

probabllity of blocking in a clrcult switched environment be

reduced because on the average, a larger portion of the

connections will be short, and perhaps avoid contact with

the occasional “long® connection? Further, what about

circuit and packet switching technology on the

integrating

same common channel? Intuitively, the 2B + D CCITT standard

implemented using the spiral

discussed in chapter 2 could be

architecture. Then, the packet traffic would not have to

compete with circult switching for wuse of the 1lnks.

e

Rather, packet and circuit switched traffic would share the

. channels. What would performance be like in this situation?]

that allows one to

curves be derived

set of balance

Can a

achieve a better balance between circuit and packet

switching, whether the traffic is integrated in some sort of

or competing for the network resources?

2B + D schenme,

5. Closed Form Expressions Wnen Failures Occur

Are reasonable and meaningful 1results possible in closed

similar to those reported in chapter

form for falled nodes,

If the analysis based on

7 for error free spliral networks?

individual link (versus node) fallures is done, are similar .

closed form expressions possible?

6. Alternate Approaches to Modeling the Spiral Topology

-

The current simulation model for the spiral topology Is I

OGN AN PN ITIICIC (1% i] ‘ Pt n n AT,
RN OO O AU O Y X "A"‘d.’ﬂ.‘.’.ﬂ', OO RODUODON OO OO OGN BOOI KRN AN MM AR M, 'n.!\.l‘l.l’ﬁf.'u.'\&'o‘l':‘

147

mostly matrix driven, with global variables, and parameter

passing among program subroutines. The C programming J

be used and passed as

language contains constructs that can

a generic shell. Would the use of the generic shell yield a

more efficient, or “"better® simulation model? 1Is the use of

(i. e. 256 x 19, 1024 x 40, 1024 x 60) a ¢

huge matrices

standard and recommended approach to developing a simulation

model? In the 1024 x 60 matrix used to simulate the spiral

architecture nodes, 5! of the columns in each row were used

TR n Wt - -

b,

as queue slots for each of the four links at each of (n)

nodes. Is it possible to maintain a common "pool” of queue

-’

slots that are allocated and return dynamically? These are

(OO

issues of (some) interest to Computer Scientist.

e e

.

2 20 oL XX

7. Spliral Topology Applied to Computer Hardware Memories

gl e

We see no immediate reason why the highly fault tolerant,

fast, on-the-fly routing attributes of the spiral topology

o -

B P e e

-
»

cannot be used as an interconnection network for connecting

Perhaps the spiral architecture

computer hardware memories.

- 0

could also be used for fast retrieval from shared memory

T a2

units. J

s

8. Behavior as Steady State |s Approached ’

There are mathematiclians interested in che' behavior of 3

systems during the transitlon perliod leading up to steady

LI R T e e s R N e i AN O N AR R T e wha!

Sl g Al M s\ UL ML g ML L

.m0
B an

148
state. Treating the spiral topology as such a system, cne
may study several issues. How does the number of messages
sent to each node vary? What happens to mean and maximum
queue lengths? What about the behavior of link utilizaticn?
Is steady state approached uniformly, or do certain types of
links (Type I, II, or IIl) approach steady state faster than

others? What about the variability in message sizes?

Upper Bound on Maximum Number of Paths

We reported in theorem ! on the number of totally disjoint
paths in any size spiral network without failures. Using
combinatorics, is it possible to place an upper bound on the

total number of paths, where links are shared? Can this be

-,

done In closed form allowing for failed nodes?

"

(e ety

B o e B W, A O

L]

N g
\ . . N v

. e P T L Yo OO R N, A RO
- RAOOCUNRNH M RPN A i n o ST YA DL DYt o o e Dol AR S e e ARA AR
R N A I Wt AU OAONOSORY X My 1 X O XK . X

PSP LTI ISR R AR P A N M AN N AN KUY AU AU UR VY DN VY DN U L RO R VAT TR O O KT AT RO R W KON RV

-

149

g T

11. LIST OF REFERENCES

¥ 1. C. M. Verber, B. J. Brownstein, R. P. Kenan, Annual

Report _on Definition_Study_for_Intelligent Optical Nodes for \

Computer Networks, pp. 29.1.2-29.1.7, 1981. "

iy -
) - -
-

w P
" e

g 2. Oliver C. Ibe and David T. Gibson, "Protocols for
Integrated Voice and Data Local Area Networks®, IEEE

2 Communications_Magazine, pp. 30-36, July 1986,

T T e, - -

PR

- e S - - - = - - - ey . - — - e - -

Y
Ly

. Modeling_and_Analysis, pp. 661-715, 1987, Addison-Wesley, !
" *
3 MA. X
X

0)
4 4. Thomas J. Herr and Thomas J. Plevyak, °“ISDN: The]
Y '
o Opportunity Begins®, IEEE_Communicatlons_Magazine, pp. 6-10, "

November 1986.

-
~
e

5. Maric Gerla and Rodolfo A. Pazos-Rangel, “Bandwidth

B

Allocation and Routing 1in ISDN’s®", [IEEE__Communications ot

o

16-26, February 1984.

X
1
]
[1]
N
tod
L]
-
kel
©

LS

6. G. S. Bhusrl, “Considerations for ISDN Planning and

-

o A
.

PR

Implementation®, IEEE__Communicatlions__Magazine, pp. 18-32,

- -

i

January 1984.

7. W. Victor Tang, "ISDN - New Vistas in Informatlion

§
0
i)

Yol
al adl

AR
Rl al at)

N vy T %0, 2 A LRI e B LR Bl R] - LR T R R Y R . o w - Cm m
L n LR GG NI a0 R e T T R A N R B T PRt W M W N AN A iy R gy

150

Processing®, IEEE___Communications Magazine, pp. 1l1-16,

November 1986.

o

8. Dwight B. Davis, “Phone Companies Argue Over New

Standards®", High__Technology__Magazine, pp. 26-31, August

1987.

A. R. K. Sastry, "Performance Objectives for ISDN’s",

0

EEE _Communications_Magazine, pp. 49-54, January 1984.

i

g g™

i

-l

[Pl

10. C. S. Skrzypczak, J. H. Weber, and W. Falconer, “Bell

-

LRI T
o o L W

Communications, pp. 19.6.1-19.6.6, 1981.

-

{1. R. M. Wilenskl, “Evolution to ISDN Within the Bell

Operating Companies®, IEEE__Communications__Magazine

33-41, January 1984,

ISDN - An Overview",

*"Transition to

12. D. J. Kostas,

1984.

11-17,

January

13. Irwin Dorros, "Keynote Address, The ISDN - A challenge

D and Opportunity for the *80’s®, IEEE__International]

17.0.1-17.0.5, 1981.

Conference on_Communications, pp.

14. unicatlons_Magazine

16-19, March 1981.

AT R T T e A R i G e Y, T R AR A A L N 1 et \ hateah

151

15. Wayne J. Felts, Warren Glfford, and Frank J. Gratzer,
"Bell’s Concept of the ISDN®", Telephony, pp. 43-51, October

1982.

16. Cliff Hoppitt, "ISDN Evolution: From Copper to Fiber in

N Easy Stages®, IEEE__Communications__Magazine, pp. 17-22,
4
“ November 1986.

T e

17. F. T. Andrews, Jr., "“ISDN ’83", IEEE Communlications

e e S e S S G - T G S -

-~
r

9
[+1]
[Te]
05
N
[=]
)
kol
o]
()]
’
(o)
-
<y
[+7]
(=]
o
[+]
s
<
V)
Lo]
N

18. W. S. Gifford, "ISDN User-Network Interfaces®, 1EEE

PR LR -

Journal _on_Selected _Areas_in__Communications, pp. 343-348,

May 1986.

- -

-

1. T. Irmer, “An Idea Turns Into Reality - CCITT

Activities on the Way to ISDN®, IEEE__Journal_on_ Selected

Areas_in_Communlicatlon, pp. 316~319, May 1986.

- e

20. “Integrated Services Digital Network: Technology and

- e
-y

Implementations=-II1*", speclal issue, !EEE Journal on Selected

<

! Areas_in_Communications, November 1986.

-
-

2. C. R. Williamson, “"Opening the Diglital Pipe, Bell

o e g

Systenm Overview”®, 1EEE International Conference __on

‘a8

Communications, pp. 29.1.1-29.%1.7, 1981.

P -

.
1

‘.l’r L] L]

N ‘

152

o - -

; 22. M. J. Ferguson, "Computation of the Varlance of the

Waiting Time for Token Rings®", IEEE Journal_on_Selected

23. L. C. Mitchell and D. A. Lide, "End-to-End Performance

Selected

Networks®, I1EEE_Journal_on

Modeling of Local Area

Areas_in_Communications, pp.975-985, September 1986.

: 24, P. J. B. King and I. Mitranl, "Modellng a Slotted Ring ;

3 Local Area Network®, IEEE__Transactlions_on_Computers, pp.

554-561,

May 1987.

Subnetworks: A Performance

"Local-Area

25. Werner Bux,

Comparison®, IEEE Transactions__on Communications, pp.

1465-1473, October 1981.

26. Mischa Schwartz, Telecommunication__Networks Protocols

Modeling_and__Analysis, pp. 451-464, 1987, Addison-Wesley, .

MA.

] 27. Simon S. Lam, "A Carrier Sense Multiple Access Protocol ﬂ

for Local Networks®", Computer Netvorkg; pp. 21-32, 1980.

28. Leonard Kleinrock and Fouad A. Tobagl, “"Packet

.-

Switching in Radio Channels: Part I-Carrier Sense i

Multiple-Access 4 Modes and The ir Throughput=-Delay

Characteristics”®, IEEE Transactlions on Communicatlons,

- S T D P S T G S S D S S IS AP G S I R AP G D G S . W S T S —

e R

]
v (4

’.‘.' T 5 AN] ¢ Mo ((™, e 5t LN S AT LI LT LAY LS AV L RN B M " ™y Mg -

LOSOGT O -'!'u'. '!'A'.’t"’n'. AN e e X o L (5 7 S MO M A LA AIAT AT AN AL AN LM !C'M'Q .| iy | it g

<&

153

pp. 1400-1416, December 1975.

29. R. M. Metcalfe and D.R. Boggs, "Ethernet: Distributed
Packet Switching for Local Computer Networks”®,

Communications of the ACM, July 1976.

- — e S G S W D G A G W S T S e .

30. A. West and A. Davison, “CNET-A Cheap Network for
Distributed Computing®", Department of Computer Science and
Statistics, Queen Mary College, University of London, Report

TR 120, March 1978.

31. K. J. Biba and J. W. Yeh, “FordNet: A Front-End

Approach to Local Computer Networks®, Proc._ _Local_ Area

Commun!_ations Network Symposium, Boston, MA, May 1979.

32. Luis F. M. DeMoraes and Izhak Rubin, “"Analysis and
Comparison of Message Queuveing Delays in Token-Rings and
Token-Buses [Local Area Networks®, Internatlonal Conference

on Communications, pp. 130-134, 1984.

33. P. J. Kuehn, “"Multiqueue Systems with Nonexhaustive

671-698, 1979.

34. W. Chou, Computer_Communications, Vol. 1, chapter 10,

- i e s e s - - = —— > S ——

1883, Prentice Hall Inc, N. J.; 1983.

- .-\. ORI ."v‘ _‘;.‘q &. RSN -,“-.‘- ‘-.-_‘..\1

e -

LR I =

- -
B A A R

" :v‘il-)r 7

-
»

O

.
o

35. W. Chou, "Terminal Response Time on Polled

Teleprocessing Networks®, Computer_ _Networking_ _Symposium,

December 1978.

Kamal, "Star Local Area Networks: A Performance

pp. 483-499, April

37. Anthony S. Acampora and Michael G. Hluchyj, “A New
Local Area Network Architecture Using a Centralized Bus"®,

12-21, BAugust 1984.

38. A. S. Acampora, M.G. Hluchyj, and C.D. Tsao, "A

Centralized-Bus Architecture for Local Area Networks”,

pp.
932-938, 1983.

38. A. G. Fraser, “DATAKIT - A Modular Network for
Synchronous and Asynchronous

International__Conference on__Communications, pp.

20.2.3, June 1979,

40. William Stallings, “Local Network Performance®,

27-36, February 1984.

41. Bart W. Stuck, "Calculating the Maximum Mean Data Rate

In Local Area Networks®, lIEEE__Computer_ Magazine, pp. 72-75,

LA LR IS 2ok A RS AR AN T AN RN KN EN R Y W WRLUR LN URUY AUV AL VAR Vay o2 Nal Ay 2y wad Was ¢ b 2P Aol Nl b0 wan da0 4 an0 8" '9 mth a¥h ey gty aty
’ \ g
ot

{
; 155 :
3 U
‘ |
[May 1983, *

'8
; .

¢
' 42. Mlischa Schwartz, Computer-Communication Network Design .
. '
i and_BAnalysis, pp. 242-253, 1977, Prentice Hall, N. J. \

o> X

43. "Interworking With Telephone Network - First Draft
: Recommendation®, CCITT Temporary Document No. 616-E, Working J
; Party XI/6, Geneva, November 30-December 3, 1982. ,
z
: 44. “Interworking Between ISDN and the Analogue Telephone ﬁ
p Network for Data Communication®, CCITT Comm. XVIII No. JR, i
| ISDN Experts Meeting, Kyoto, Japan, February 14-25, 1983. {
; 3
45. Mlscha Schwartz, Computer-Communication Network Design iy
’ and_Analysis, pp. 71-115, 1977, Prentice Hall, N.J. ;
! \
i 46. Leonard Kleinrock, Queueing_Systems, I, 1975; 2, 1976, »
i Wlley~Intersclence, N. Y. f
A
X 47. 0. M. M. Mitchell, "Implementing ISDN in the Unjited R
: States®, IEEE_Journal on__Selected Areas_in_Communicatlons, a
pp. 398-406, May 1986. ‘ ?
i o
: 48. “Information Network Archltecture Evaluation and ?
\ Development”, Draft Report, Research Triangle Institute, N. -1

C., pp- 22 - 25, December 1986:

? L]

PO T 2 Q. .c'

-~
L)

(e

O e o S i O N g %
- A A - A ¥, S b Sl s ok oaine bed S b Al N b e | Laa b B e L 2 B LN A B {1

: 156

A. EVOLUTION TO ISDN WITHIN THE BELL OPERATING COMPANIES

EX The Bell System evolutlion toward ISDN started In 1962 with
“ the introduction of the T! carrier system. The Bell System
has passed many additional milestones since then, Including

e the following (101:
‘0

* 1965 - Stored Program Controlled Switching
Y * 1974 - Digital Data System/Dataphone Digital Service
2 % 1976 - Time Division Tandem Switch

* 1976 - Packet Switched signal ing

e
*

R

1981 - Time division Local Switch

o a
R
<

The Bell Operating Companies’ (BOC’s) telecommunications
networks today are primarily 4-kHz volce networks. The
.I'
ﬂ origins of technologies that enable the economlic evolution
o

toward an ISDN, however, began over twenty vyears ago with

m the Introduction of the T~carrler system and the AT&T)
§ Western Electric 1ESS switch [471.

R

ﬁ The T-carrler system provides a 1.544-Mbps faclllity carryling ‘
g 24 to 64-kbps channels plus framing bits. Some of the bits '
- in the 64-kbps channels are robbed for signaling purposes.

: While thls 1s not a perceptible degradation on voice

:ﬂ clrcuits, it would cause unacceptable error rates for data

i

applications. Hence, as on Dataphone Digltal Service (DDS),

X only 56-kbps can be provided for customer appllcatlions.

AR

el RN X i .

o b
P a o . S

o e -

- -
",-'.' -v

v -

FESEU N AAER A N T N U U L U N WA R UL I W U R UL WY U R NG N o R T e S S S T oy

157
ISDN evolution strategies range from overlay strategies, In
which a parallel ISDN network is deployed side-by-side with
the exlsting voice network, to replacement strategies, in
which geographic areas undergo replacement of existing

equipment with ISDN equipment. Given the large capltal

investment in the telecommunications networks of the BOC’s,
a strategy which combines the two Is appropriate. Existing
equipment must be augmented vwherever possible, with new

equipment deployed when required [(11].

The telecommunications networks of the BOC’s will evolve to
ISDN in basfcally a four-step fashion [11]. PFlrst, new
transition services will be introduced which offer ISDN-1ike
services. These services will be low in development and
deployment cost so as to minimize the Inherent risk
assoclated with new service offerings. Examples {nclude
Circult Switched Digital Capability and Local Area Data
Transport. Second, as the exi{sting network grows to meet the
rising demands of customer traffic, new ISDN compatible
equipment will be deployed, seeding the network with
facllities capable of meeting the ISDN standards. Examples
of such equipment 1include fiber optics, 64-kbps clear
channel transmission equipment and common channel signaling
capablilitles. Third, true ISDN service offerings will
appear in areas where customer needs dictate them. Typically
these will be business areas, usually located in downtown

metropolitan areas. And fourth, as ISDN demand increases,

"

807 Ba- Ui 81 00" 08 al"

e -

a1

E)
TG (! $! IS NS RATL Y S SIS JA N 2t S O 1 " "t)
L O e TR R T R N o N o ORIV K R AN IR GY, TR ERE ST Y5 A ; A "- M > '.". .

N N A N T N R A A R R R T TN NI . CwoTD

158

ISDN capabilities will permeate the entire BOC network.

The exlsting publlc telecommunicatlions network can be
characterized as having five major components: the local
loop, the local switch, the metro or Interoffice facillity,
the tandem switch and the intercity facility. In addition to

these, slgnalling 1Is the “glue®" that holds thlis entire

process together (101,

3
¢ J. Weber and C. Skrzypczak [10] and R. Wiensk!l [11]) discuss
5 several areas In which digital progress must continue to
wl
§ evolve If we are to realize the ISDN as descrlibed by the
3!
f CCITT. These areas are as follows:
3
K 1. ISDN Access Evolutlion
L/
b 2. Local Loop Evolution
o 3. Metro/Interoffice Evolution
W
N 4 Tandem Swlitching Evolution
5. Intercity Facilities Evolution
> 6 Signaling Network Evolution
t
b 7. Interworking of ISDN with existing Services
1
i
. The following paragraphs describe briefly underlying
z economic trends which Impact the five major components of
S)
3 the public network and the seven areas of the ISDN evolution
: (1o, 1t1.
;
)
]
!
‘l
o
L/

"
X A A Pt R 5) . - " r . " - -
OAMIAJOUCOM O UOC e X S LM M M X M N ORI Gl B M SOOI .!‘.." ."|'2. !."...'. RN . . '.'.‘ " “‘ g

]
)
.

UREREANMMERN AR AN S SARRTARR T

A.1. ISDN Access Evolution

Several access methods are under study to provide data and

the same 2-wire loop (15]. The first technique

voice over

multiplexing (TCMY to provide a

uses time compresslion

56-kbps digital data transmission channel. The second

technique, the digital subscriber 1line (DSL), can be

to support multiple

provided using TCM or other techniques

digital channels in the ISDN. The third technique, digital

e over analog, uses channel equipment to put data Cup to

8-kbps) In the frequency spectrum above voice. For higher

channels multiplexed

capacity applications, elither multiple

together or broadband channels can be employed. The

broadband channels can be provided using T-carrier, radio,

lightwave or other systems.

Local Loop Evolution

The regarded, along with the intercity

local loop is often

facilities, as a bottleneck In providing digital

capabilities [51]. This 1is true given the percentage of

loops currently carrying digital signals. A key issue is

the digital techniques that can be overlayed on the existing

metallic loop plant. Four alternatives include four-wire

baseband, multiplexing, low bit rate data above voice, and

digital subscriber line (51,

: [y W w, ¥ v v, - Y M - - .
e 0“ _|..|',l,', e, ‘.‘“ y 1 W ‘(', n, o N e s vr \ .\' foo '-: (RN Y ."-.\ ..‘-f‘.h..‘-,'l WA \ v W.r'ﬁ."-.
. 3

LT M SR LT LI LI TS LW LA LU TR L (R LA SRS AT T R RS

160

-~
N

i,

A.3. Metro/Interofflice Evolution

-,

Digital technology flrst penetrated the public

telecommunication network In the metro facilities component

- o e

with the Introduction of T! carriers in 1962. 8Since the
public telecommunications network was originally an analog

network, it was necessary to go through an analog to digital

TVl e e,

L A e &5 0 ep

and dlgital to analog conversion each time a digital

component was Inserted, However, as digltal technology

2 & T e

began to proliferate, a new digital component was often

interfaced dlirectly with another digital rather than an

-

analog component. This eliminated the need for conversion

N

and further reduced the cost of the digital alternative

- . -

(101.

A.4. Tandem Switch Evolution

\4

The obvious cholce for a tandem switching vehicle to support :
4

$

P

end-to-end digital connectivity is a stored program ,

P

controlled (SPC) time division switch I[see 101, An SPC

-
.

space division switch with relatively mlnor modificatlions

- -

‘- -
S

can also support end-to-end digital connectivity. In the

SN A

-
o T -

evolution to ISDN, both time and space division technologies

will probably be employed.

y L) 4 X aNEYP) " A PR R LG B TOANI IS AT T g g . .- . -
OO INOUCOOCOOUIOU M 1, |) 2 (¥ "'\ > Sr\ if o A ¥ - l.”- pvas ""\r!’ AT N ‘ ol
m 2 R KNS NS, A z

D Mo 20, N

DAL U AN A AMAT KU NN KUR A RGN IR UK URNUY 0 U ORI RO S R LR T R A KT R N N AN D .50 %

161

T e e

A.5. Interclty Facility Evolution

In the Intercity facility portion of the network, digital t
technology has not generally proven itself over the analog
alternative based on economics alone [10). The greater long
4 haul breakthrough might occur with subrate (less than

56/64-Kbps) voice. ;
i A.6. Signaling Network Evolution [

The signaling capabllity which ties together the flve basic

: components of the public telecommunications network can he

% separated into two major segments [10]: Signaling from the)

‘ customer premises to the line side of the local switch and

i signaling from the trunk side of the originating local

b switch to the trunk side of the terminating local switch. ‘
On the line slde of the local switch and the loop, some of

o the future ISDN technologles such as DSL, will support the

W signaling needs of the ISDN. The Bell System began to N

Introduce out~of~band common channel signaling 1In the

il portion of the network between central offices in 1976. It
? provides significant trunk efficlencies and faster call set i
: up times. It 1is now proving to be capable of supporting ‘
& extended routing, enabling the provision of a wide range of 2
g new and expanded service capabllities compatible with the

evolution to ISDN.

k)

oAty ',-w- S B N A e AN A A A TR AT AR .

; A y
o it A AN UM AT A e N, o

P R RN I IR PRI I I IR A KSR K L R AT U AR L LA LA LW Ry G R A Ve §e 450 Bs 8% 80 BVa 872 88 $°5 A' 878 0500 0020 2. 8° 0.0 80" 9.6 Bt 0.t gt EE

162

3 A.7. Interworking of ISDN with Existing Services

K Interworkling with exlsting services wlll allow for a
ﬂﬂ successful early deployment of ISDN in a smooth,
step-by-step upward compatible fashion. Several schemes have

! been proposed to provide interworking (10, 43, 44].

-
Sl

@
X o . . , R .) .
'..t". ‘o ‘c. ‘a.l‘:, Q. .v‘l‘m .l‘t. v.l~a. ‘0.‘ { X j. ,0. oy oV "- ¥ h"h\'. ¢ ». “" ‘h \"‘ v ¥

- W W

N RLR LI I U YN Wy R\ T3t v d ¥l Al \s g ¥yl LA W WL AU W WU LN UL N UNU Y WU YUNU Y U WL YU YUY UN . W * i'\'

163 ,

\ 1

! B. SIMULATON MODEL DESCRIPTION)
B.1. 1Introduction

The simulation model used in this research contains

approximately 2700 1lines of computer program source code.

T e e
L 4

The C programming language was used, and the compiled source

code runs on a computer system using the UNIX operating

N -

system. Most of the model development work was done on the

vaX 11/780 computer system at North Carolina State

Ve mp

’ University. To obtain the summary results used for

¢ \
§ comparative analyslis, the completed model was run on a Gould '
o

K computer system at the U. S. Air Force Academy in Colorado. t

The summaries of these simulation results are found in

Appendix D. And the complete C source code 1listing is in

o R

-
"
-

Appendix E. %

. -

A matrix driven software development strateqgy was used to
K develop the final model that implements the spiral computer
network topology concept. The actual building of a spiral
network, with or wlthout falled nodes, 1s Implemented hy E
using a matrix with 256 rows and 19 columns. The 256 rows
4 allow a spiral network to contain at most 64 modules (256
nodes). See the declarations section In the documented

source code listing in Appendix E for an explanation of how |

each column 1ls used.

5 TR

164

Informatlon

1024 rows and 40 columns contains

A matrix with

needed to keep track of, and send messages over the network.

At most 1024 active messages can exist in the network at any

one time. This 1limitation is easily changed to allow for

more messages. However, we were able to deliver 8000

per second,

messages with mean arrival rate of .05 messages

over a 20 module (80

and mean size of 1000 8-bit characters,

node) network without exceeding the 1024 active message

+ limitatlon. See the declarations In the C program source

code in Appendix E for an explanation of how the 40 columns

o et o

" -

are used.

v . - . o

- o

The simulation program was written in two major phases.

A I

Phase I bullds a spiral network and sets fallures as

: desired. Phase II simulates the passing of messages over i,

the network. The remainder of this appendix addresses these

two phases, and summarizes the specific common parameters

2
" used to generate results that were compared to analytlical)
§

ones.

B.2. Phase I: Constructlion of a Splral Network

An Individual running this program begins by responding to a

series of computer generated prompts. The prompts include:

) t. How many modules are desired? N

2. Does the user want nodes or complete modules to fail?

user want to save or see a copy of the current

3. Does the

L)
[)

» P 'S L4 J '8 : ™ W LI LY] AT Tt .
Lottt u'hn‘.’l"'s"‘c‘t’t’.,t’. (X Y AN l'..t‘ol'u'o »l'o . W ol'o‘l"l‘oj 0 0% 0 !“p.l.o.lu,u Ay V v)‘)‘ " ‘ J‘ l. " :‘

A e - - .

-

-

P

s > T e W

A A X

-

» o

L e e

!
) .

- , . A Tt e e e At et m A A
SO 00 a bW G S Tt ST N, S LT A T NN AT T T 4 LA A W

R AR L

R I N IR U U AR R RIS RRTG A R R AT A N L IS Y ALY R Y R I I Y oIy

165

network connectivity matrix?

The program checks to Insure that a legal number of modules
has been requested. For example, if the user requested more
modules than there are node numbers available, then he is
warned of this fact, and afforded the opportunity to add
additional node numbers. If the number of requested modules
is an integer multiple of 3 (see chapter 5), an explanation
is returned explaining why that request i{s not valid. Once
the desired spiral network configuration is obtained, the

program begins Phase II with another series of prompts.

B.3. Phase II: Network Operation

This portion of the simulation experience also begins by
having the wuser respond to a set of questions, which

include:

1. Is the user ready to send traffic over the network?

2. What common link speed would the user like?

3. What 1is the mean message size (selected from an
exponentially distributed population)?

4., What 1is the mean message interarrival time (selected
from a Poisson distribution)?

5. How many messages should be delivered prior to gathering
statistics?

6. How many messages should be used for statistics?

Ll L g e Rl i 2

Y S

e A,

X E_.

T AT AL TRt AI A A LA T R RS LA AT R A ol e gh Fal ral Vb fako"al cal Vel ol tal Wal 2} Vo) Sab A N RNY Snl 0ah Ueh Ul Ul ¢, Gl | Aol Sa) sg

; 166]
] Once all necessary parameters have been entered, the program \
proceeds to simulate the network operation., Nodes send to
! each other with equal probability. Of course If nodes have
5 failed, they neither generate, nor receive traffic. Since :
source nodes have no knowledge of the status of destination

nodes, a short message may be generated notifylng the sender J
R of the failure. This message may be sent by the directly)

connected node that attempted delivery to the failed node.

B Several statistical values are accumulated during the run,
and others are found after all messages have been delivered.
Every individual message 13 accounted for by number, and a
complete route trace for each message is available. The A

Summary of Simulation Results in Appendix D shows exactly

ﬁ which statistics are reported. The simulation model source e
&]
is code contains several subroutines that were wused to debug X
. the code, and verify operations of key functions.

y ~
X]
W, v
6" ¥
) /]
§ B.4. 8Specific Parameters Used for Comparative Analysis i
L v
2 The following parameters were used to generate the results :
) ¢
if reported on and compared in chapters 6, 7, and 8: :
. 1. Number of modules: 4 through 20 (16 - 80 nodes),

K 5
j omitting Integer multiples of 3 (see chapter 5 A

for explanation).

2. Failed nodes: node ! only, | and 6, and 1, 6, and 1]

- -
-

for each of the networks contalning 4 through 20 modules,

P
e e - _

N h MW, 2 N] LY LSRR = T Mt e
1N N D R N N A DA AT D

R R A AP N

X

{

. 167]

):: \]

" 3. Mean message slze: 1000 8-bit characters \

¢ t

. 4. Population distribution for message size: exponential.

‘.

a 5. Speed, all links: 19200 bits per second.

A :

s 6. Mean message interarrival time: 20 seconds. ‘

¥

¥ 7. Message arrival pattern: Polsson.

Y)

{ 8. Total messages delivered to reach steady state: 4000, y

1 g

} 9. Total messages used for statistics: 4000. {

K]

; ;

1] b

i ‘

b f

? t

5 v

X !

R

" ;

) A .
¥

K K

fo y

[

\ X

P _;

J

}

A * - ‘
-

8

~

) 4

" l. t

* I3

4 !

L)

!

R R .,;_5"’\’ -\: IR I AP Ny

. e N . A WL 1 P L Yy
et o e e 1 e S N N

SRR R N R R R R A R R A R R A A R A e T R U R R TR R TP A S%p R%0 50 Bta g¥n hte %e 400 0'a 070 800 K10 N N 8" R B 0070 8 5.0 gt Bt Bl Q.6 §

TIME SUMMARY

RESPONCS .

seconds)

(in

of failures

Number

1.45934

1.06421 1.11302

.39509 1.45060 . 48640

1.37995

2.18232

2.19353

.13278

1.96620

2.65325

2.26595 . 28465 2.63852

3.83791

3.8237%

. 22027

3.19398

4.21347

4.06034

3.66591 .20082

5.39482 5.63978

.01102

4.94012
6.09805

6.06670

.89880

5.28370

6.63168 .13118 7.51444 7.60873

8.66145 8.74144

.02022

7.40714

10.27761 10.96002

8.68546 .45718

9.52298 12.19756 13.05622

\ R N R N R I o : W P AN "
04, L 0 Nt AT A A AT T " D00 . .0 "‘"F PRNRLALRN

s es an s o

" :“

o

-

"

o

- s v
s

2 .

.

P it

I Y3 ot0 ath

TN PN AT W N

L NN L

L ML I WL M W U N W oy U R M T U O O R O T N TR T YOy)
-

169

MEAN QUEUE LENGTH SUMMARY

Number of Failures

10
11

1 2
. 00528 01113
.00991 . 00965
.02340 .02348
.02384 .03544
.04717 .06963
.08223 .07674
.10708 .11854
. 13675 .14629
17791 . 19027
.20369 .23472
. 26245 .30543
.33848 37854

.01481
.01089
.02275
.03380
.06815
.07720
.12749
. 14257
.19675

.....

v Wy W L]

O T) D R A s e A s A N i gt

Ba’ Be® 0 Vg a¥g” ot ota”

Bt

TR s A

U
¢

’

P L U ON LPM A P U O CRT LR U TG L0 T S R M

‘al $al dah Vah 6o drg 0 o Ll *§a g 9 86, 4'8 9% 2' 5 a8 VA ot}

170

MEAN SYSTEM UTILIZATION

Number of Failures

1 2
.04915 05721
. 05970 . 06067
.08303 .08154
.08925 .09713
. 11266 .12128
.13323 .13101
.14673 . 14988
.15810 .15848
17441 . 17497
.18123 . 18957
.20770 .21000

22342 22481

N WG WU AR L AR O

e e S S e S D e SR S Gh R R S N ES SN G e Gh S WS W R W SNy S Pm G ER e S R W SR R B SR R e SR R R SR R GR Gm G We e

_‘

A(

;:

R C.3.
X m
. 4
:

% 5
[

R 7
’ 8
; 10
1
; 13
i 14
: 16
: 17
; 19
§

- 20
)

]

[)

$

i

'

]

g ha¥ | ! [v " "~ ”
OMUVOSOC i‘..l‘e‘l'— AW HETE R UAC A NN \'o‘.'o‘l’o CINTORE RN A W, '.‘p (DAL AU AT XN v s

L)
s

& &

ST e

- e
DRt

A ST)

[l e

S X PR PPE N ST FORECAEE AR ALCARAT N U UM WY U AU WK U U AR SR AN RN TG N “‘\" N20e% §a¥ §o¥ Pav RN KT “giR" 83 - o Sa' gl ath ata

171 ;
§ D. SUMMARY OF SIMULATION RESULTS {
ﬁ - Nunmber of modules (nodes): 4 (16) '
P Failed module(s): :
§ NONE! f
s Falled node(s) (including those Iin failed modules): :
. NONE! ‘ :
ﬁ Mean message size: 8000 bits :
' Line speed all llnks: 19200 bits/sec !
; Mean message interarrival time: 20000 msecs \
§ Total messages generated: 8003 %
! Messages dellivered before stats: 4000
? Messages used for statlstics: 4000 "
i Messages undelivered due to faillure(s): O é
X Messages left {n network: 3)
ﬁ Maximum queue length: 3 msgs 1
; Node with max queue: 0 E
g Link with max queue: 4 !
s Mean queue length: 0.004832 msgs h
3 Maximum path length: 4 hops i
3 Mean path length: 2.3923 hops %
g Mean response time per message: 1064.2078 msecs j
E Mean delay/hop: 444 .8564 msecs ‘
: Mean transmission time/hop: 416 msecs
; Mean queueing time/hop: 28.8564 msecs)
; Mean 1link busy time: 61561.2031 msecs i
? Probabllity of link busy (rho): 0.048201
i Probability msg does not queue: 0.951799 "
: ¥

. -
-

ATACS LN T L AT A A A A TOIC IR R T A -
OGO oo T L N s T S A R e A S O e VL R A s,

Y U A L S AT I B ST LA T LIRT U Py ST U T AT LAY R VAT R ORI A TR Y 7 W UASUARD ASURINAITAT RIS VT SURSTRR v RPN TRNNTRAR

172

‘: SUMMARY OF SIMULATION RESULTS

;Z Number of modules (nodes): 5 (20)

: Failed module(s):

" - NONE!

‘ Falled node(s) (including those In failed modules):

E NONE! ;
@ Mean message size: 8000 bits ;
& Line speed all 1inks: 19200 bits/sec

if Mean message interarrival time: 20000 msecs

é Total messages generated: 8006

: Messages delivered before stats: 4000

? Messages used for statistics: 4000 ‘
ﬁ Messages undeljivered due to failure(s): O]
s Messages left in network: 6 :
gz Maximum queue length: 4 msgs ‘
?: Node with max queue: 1 X
2 Link with max queue: 4 :
i Mean queue length: 0.009471 msgs

; Maximum path length: 5 hops E
2 Mean path length: 2.9005 hops ;
i Mean response time per message: 1379.9475 msecs)
R Mean delay/hop: 475.7620 msecs :
4 Mean transmission time/hop: 416 msecs :
§ Mean queueing time/hop: 59.7620 msecs ¢
? Mean 1link busy time: 60784.1992 msecs ;
4 Probability of llink busy (rho): 0.0%58903

'y Probability msg does not queue: 0.941097 !

(R v T y e R VAVAPLV I RE A AT L' " WP - g - ‘-«
ST T RN T T TN A T S I A N e R T o NN SN TN A R W I ACAT YL

e

]
-

-

—
- -

173

SUMMARY OF SIMULATION RESULTS

Number of modules (nodes):

Failed module(s):
NONE!

R PO A U AR R W KW N RN AW TN UL W U UN L L R R R R R e et 9 gVl a¥a a¥d 52 n i g ath i8R gt ——

7 (28>

Failed node(s) (including those in falled modules):

NONE'!
Mean message size:
Line speed all links:
Mean message interarrival time:
Total messages generated:
Messages dellivered before stats:
Messages used for statistics:
Messages undelivered due to failure(s):
Messages left In network:
Maximum queue length:
Node with max queue:
Link with max queue:
Mean queue length:
Maximum path length:
Mean path length:
Mean response time per message:
Mean delay/hop:
Mean transmission time/hop:
Mean queveing time/hop:
Mean link busy time:
Probabllity of link busy (rho):

Probability msg does not queue:

S A WL s

8000 bits

19200 blts/sec
20000 msecs
8012

4000

4000

0

12

6 msgs

18

3

0.019092 msgs

7 hops

3.8772 hops
1966.1960 msecs
507.1111 msecs
416 msecs
91.1111 msecs
57764.1328 msecs
0.079719

0.920281

O." ~ ~ 4 - L ~ o W SN W ¥ LTI Y N TATR R e AR W W = " g Vet " Il g
a'.?i':'l‘;' l,..! £ .A‘A,I!",l'. c‘l,o Y > MR LN .0"' “- ")‘. ' '-‘ . -‘ . ‘ ’ _».V o .“\‘ ™ c‘!ov

A MR A S b

PTG AT I \ P AT U P LA W LT U U N N N L O A W N U R TR O R R T N T T I T TN Y I I T TR ORI
) y TS

\
’ 174 '
: SUMMARY OF SIMULATION RESULTS E
E Number of modules (nodes): 8 (32)
; Failed module(s):
i NONE! h
@ Falled node(s) (including those In falled modules): 7
N NONE! ?
i Mean message size: 8000 bits
g Line speed all links: 19200 bits/sec
§ Mean message interarrival time: 20000 msecs 1
f Total messages generated: 8015 §
! Messages dellivered before stats: 4000 .
f Messages used for statistics: 4000

B Messages undelivered due to fallure(s): O

' Messages left In network: 15

% Maximum queue length: 7 msgs i
% Node with max queue: 18 E
! Link with max queue: 4 :
E Mean queue length: 0.024363 msgs .
? Maximum path length: 8 hops 4
5 Mean path length: 4.3488 hops !
? Mean response time per message: 2265.9526 msecs

% Mean delay/hop: 521.0583 msecs ;
? Mean transmission time/hop: 416 msecs

5 Mean queueing time/hop: 105.0583 msecs

? Mean 1ink busy time: 56365.5938 msecs ¢
3 Probabllity of 1ink busy (rho): 0.088485 {
K Probability msg does not queue: 0.911515

Cd
e -

W H PO 0 AN Y s T T ! ~ - RPN
U O LA N N D I A T e OGN A LA ORI U D {5 JO PR Lo e DN e vy - - ‘ KWt ’ ho

A I I J TN R R N U WU N U U U N L W M R . W N U o W T N o T N N R T O 4y

175 v
1
SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 10 (40) -

Failed module(s): %

NONE! >

Failed node(s) (including those in falled modules): ?

NONE! ?

Mean message size: 8000 bits ﬁ

Line speed all links: 19200 bits/sec 2

Mean message interarrival time: 20000 msecs i

; Total messages generated: 8022 lﬁ
' Messages dellvered before stats: 4000 $
f Messages used for statistics: 4000 &
‘ Messages undelivered due to failure(s): O g
Messages left In network: 22 i

Maximum queue length: 8 msgs ﬂ

Node with max queue: 11 g

Link with max queue: q f

Mean queue length: 0.049986 msgs ,§

Maximum path length: 10 hops {

Mean path length: 5.3597 hops "

Mean response time per message: 3193.9814 msecs }

Mean delay/hop: 595.9199 msecs .s

Mean transmission time/hop: 416 msecs ;Q

Mean queueing time/hop: 179.9199 msecs :ﬁ

Mean link busy time: 55793.5859 msecs ;

Probability of link busy (rhos: 0.112856)

Probability msg does not queue: 0.887144 .f

Al

n 3 g ram . . .- o
00 .«"‘ e AX KA K AP AR R AN A R ,l". by, ¢

Ve v v
NSO ORI

176

SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 11 (44D
Failed module(s):
NONE!
Falled node(s) (including those in failed modules):
NONE!
Mean message size: 8000 bits
Line speed all links: 19200 bits/sec
Mean message interarrival time: 20000 msecs
Total messages generated: 8029
Messages dellivered before stats: 4000
Messages used for statistics: 4000

Messages undellvered due to fallure(s): O

Messages left In network: 29

Maximum queue length: 9 msgs

Node with max queue: 31

Link with max queue: 4

Mean queue length: 0.060764 msgs
Maximum path length: 1t hops

Mean path length: 5.9078 hops
Mean response time per message: 3665.9067 msecs
Mean delay/hop: 620.5249 msecs
Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 204.5249 msecs
Mean link busy time: 55864.1523 msecs
Probabllity of link busy (rho): 0.121042

Probability msg does not queue: 0.878958

"

vor T e R R R R R N e T Y TR N Y P U S R TN (NN A RRIRT

177

: SUMMARY OF SIMULATION RESULTS

Number of modules (nodes):

.~ e e

Failed module(s):

Pa¥: R AN N A R A T Y R T Y I NIWIT T

13 (52)

8000 bits

NONE!
Falled node(s) (including those in falled modules):
: NONE!
: Mean message size:

Line speed all links:
y Mean message interarrival time:

Total messages generated:

PR A N s

Messages dellivered before stats:

o

Messages used for statistics:

e
R

Messages undelivered due to failured(s):

-

Messages left In network:
Maximum queue length:

Node with max queue:

A e o vl

Link with max gqueue:
Mean queue length:

Maximum path length:

R S ik

Mean path length:

Mean response time per message:
! Mean delay/hop:

D Mean transmission time/hop:
Mean queueing time/hop:

Mean link busy time:

Probablillity of 1llnk busy (rho):

Probability msg does not queue:

-
h -

.
3
k)
‘s
.

)
)

LA

. P N e) (o " -
St afLO N e A.l"‘«"\|\\'ﬂ»lt’ () .\“"l“‘! “J.'.V‘-v."v.“'."

WA T AT T
. A » AR by e

19200 bits/sec
20000 msecs
8051

4000

4000

0

51

14 msgs

9

4

0.102308 msgs
13 hops

6.9240 hops
4940.1172 msecs
713.4773 msecs
416 msecs
297.4773 msecs
56526.7148 msecs
0.146728

0.853272

il
»

- ¥
.’ u

A AR AT

T -

TRy

-
| e

- - e

Wy

e~y W & e it

N A B) R AR

2

.

s - -

P et

e W L]

s
‘i
R
i
B
]

L

O WA W A IR NN U U LI WU UL UL VLU T WO

178

SUMMARY OF SIMULATION RESULTS

Number of modules (nodes):

Failed module(s):
NONE ¢

N WL L N T P T S S TR T T T T TR T TN TS PO TS T TS

14 (56)

Failed node(s) (including those Iin falled modules):

NONE!
Mean message size:
Line speed all 1links:
Mean message interarrival time:
Total messages generated:
Messages dellvered before stats:

Messages used for statistics:

Messages undelivered due to fallure(s):

Messages left in network:
Maximum queue length:

Node with max queue:

Link with max queuve:

Mean queue length:

Maximum path length:

Mean path length:

Mean response time per message:
Mean delay/hop:

Mean transmission time/hop:
Mean queueing time/hop:

Mean link busy time:
Probablllity of link busy (rho):

Probability msg does not queue:

By .‘l?\’lg\" B o'Q..'lA".Q . ¢ 1 () '."..~..‘.".) 4.\.‘ “Q. . .‘.. a ._ '."'.‘ .f ‘ ‘ ' N y ¢

8000 bits
19200 bits/sec
20000 msecs
8054

4000

4000

0

54

10 msgs

t4

4

0.110777 msgs
{4 hops
7.3497 hops

5283.6992 msecs

718.8950 msecs
416 msecs

302.8950 msecs

54718.0078 msecs

0.150596

0.849404

Pt

o N e

o A O

LA LI PO POt 2Nk PSR AN TR TN R O T O R P W KV NN AN T U R R MR R LK o SRR ATATAY “aha Al Vatavai v at vay. AP Nk Al Al Va8 0 - 9t . . TV
LY W h . w e V2 "] i .

- w
S
2
’
v
179 .
¢
SUMMARY OF SIMULATION RESULTS ‘é
o
)
Number of modules (nodes): 16 (64) Q
04
Failed module(s): Q
NONE! o
b
Falled node(s) (including those in failed modules):
NONE! .:
Mean message size: 8000 bits ;i
b
(
Line speed all links: 19200 bits/sec X
)
Mean message interarrival time: 20000 msecs ,$
Ud
Total messages generated: 8078 ~§
J
Messages dellvered before stats: 4000 ﬂ.
Messages used for statistics: 4000 ;?
Messages undel lvered due to fallure(s): O !
)
Messages left {n network: 78 !
)
/ Maximum gueue length: 14 msgs Q
f Y,
) Node with max queue: 25 .;
Link with max queue: 4 }
Mean queue length: 0.155054 msgs
)n
Maximum path length: 16 hops {
Mean path length: 8.4295 hops g‘
Mean response time per message: 6631.6797 msecs Y,
Mean delay/hop: 786.7227 msecs A
P
Mean transmisslon time/hop: 416 msecs &
: Mean queueing time/hop: 370.7227 msecs ﬁ
) |
) Mean link busy time: 54123.2891 msecs \
y) J
“ Probablllity of llink busy (rho): 0.171358 .
K Probability msg does not queue: 0.828642 !
X oy,
.z
1 }
3 4yt

> - -

¥ Jaf

BOAONDAORORD) " " 0 -, oS S WL - -~ " AP, L R -y
DOV OM O AN M OO O D 0 oM O W e WM A O M e e T S X e ’..!. e :f"\l" ' ol) % ,-. o

;Q:,,‘h:',.-'u’ A U U A T R L e L SN RV Vi oYl e W nt h a VR e et E e ek et ate ¥, R e T . e A% % Rfs AN gE VRS
N 4
i

o 180
. y
™ SUMMARY OF SIMULATION RESULTS !
g Number of modules (nodes): 17 (68) :
ﬁ Failed module(s):
m NONE!
o FPalled node(s) (lncludling those in falled modules):
$ NONE ! ‘
g Mean message size: 8000 bits
€ Line speed all links: 19200 bits/sec
? Mean message Interarrival time: 20000 msecs
-% Total messages generated: 8073
A4 Messages dellvered before stats: 4000
? Messages used for statistics: 4000
*i Messages undelivered due to failure(s): O ‘
E Messages left Iin network: 73
% Maximum queue length: 19 msgs
E? Node with max queue: 20
7$ Link with max queue: 4
iﬁ Mean queue length: 0.179860 msgs
%. Maximum path length: 17 hops
it Mean path length: 8.9185 hops
?, Mean response time per message: 7407.1406 msecs
.; Mean delay/hop: 830.5364 msecs
Mean transmlisslion time/hop: 416 msecs
§ Mean queueing time/hop: 414.5364 msecs
.& Mean link busy time: 53412.2813 msecs
& Probability of link busy (rho): 0.177962 {
E§ Probability msg does not queue: 0.822038
'\
:
O
- |
i

it - o~ N A RN R M e AT A 4 e m
Lide L »-\ .‘ ..~‘ .-"' Q‘- LMY "w“ h l'n L ..‘! .’t l'n . ¥ i s ’ 1 t» " -. .. .-f‘ ‘- PR .- Y ¥ ‘- W J V‘.' ‘\‘;.. —.’"{ ‘J‘.---;.- AN, - -‘

AD-A196 115 A FAULT TOLERANT SELF-ROUTING COMPUTER NETHORK TOPOLOGY 3/3

(V) AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH
| T L MITCHELL 1988 AFIT/CI/NR-88-68
UNCLASSIFIED F/G 12/7

1

LA S

ahe ot S S B e ST

-

L I L R IS LIS LT LI L R A L T I A L L s L P I A A L AL A O LA R T I T D N L ORI RSOy 3

. im e

T

-~ - -

-t

ISdY N
(VR (°9

-

EEEE

AFEEEEEEE

onl—
N
|
(44
€
(1]
= ==
b N
© go
. o
oW e

oo

:l-!—
o
PSS

¥

!

-
XOCs

-

o -

-

P - -

\ t". |.l o‘ O
l' 2 W, l‘v‘l 3 :ﬁ.
.

' '.l. !c‘l‘.g':a':“'

L)

181
SUMMARY OF SIMULATION RESULTS

Number of modules (nodes):

Failed module(s):
NONE!

19 (76)

Failed node(s) (includling those in falled modules):

NONE!
Mean message size:
Line speed all links:
Mean message interarrival time:
Total messages generated:
Messages dellvered before stats:

Messages used for statistics:

Messages undel ivered due to fallure(s):

Messages left in network:
Maximum queue length:

Node with max queue:

Link with max queve:

Mean queue length:

Maximum path length:

Mean path length:

Mean response time per message:
Mean delay/hop:

Mean transmission time/hop:
Mean queueing time/hop:

Mean link busy time:
Probablility of link busy (rho):

Probability msg does not queuve:

b 0 ‘ ' g AT QOL O MO .
“Mm'MlW”MMwML“TkLuLLuMmLuMJﬂuﬁkﬂ.

8000 bits
19200 bits/sec
20000 msecs
8091

4000

4000

0

91

12 msgs

4

4

0.226057 msgs
19 hops
9.8270 hops

8685.4648 msecs

883.8367 msecs
416 msecs

467.8367 msecs

54357.6641 msecs

0.202256

0.797744

-

]
gy

-

s

-
-

)
by

AR AR LA I AT I A RN Rt R A R T A TR X M KN AR T MY N 9 bad LB LYY P RAXARNN (AP ANEAEA NN LA BN)

N
i

182

SUMMARY OF SIMULATION RESULTS

Lt e - -

Number of modules (nodes): 20 (80) k
Failed module(s): 3
NONE! '
. Failed node(s) (including those in failed modules): ‘
: NONE! 3
f Mean message size: 8000 blits E
Line speed all llnks: 19200 blts/sec 3
Mean message interarrival time: 20000 msecs N
: Total messages generated: 8130 ?
: Messages dellvered before stats: 4000 ﬁ
j: Messages used for statistics: 4000)
i Messages undelivered due to fallure(s): O {
¢ Messages left {n network: 130 :
A Maximum queue length: 13 msgs 2
t Node with max queue: 20 é
: Link with max queuve: 4 g
% Mean queue length: 0.263727 msgs %
z Maximum path length: 20 hops ;
i Mean path length: 10.2005 hops ?
f Mean response time per message: 9522.9766 msecs ;
3 Mean delay/hop: 933.5793 msecs :
ﬁ Mean transmission time/hop: 416 msecs]
S Mean queueing time/hop: 517.5793 msecs h
i Mean link busy time: 53638.7500 msecs
b Probabllity of link busy (rho): 0.212634 :
2 Probability msg does not queue: 0.787366 y

T e -
-

;
.
l,
D s A0 % wa ¥) A LSS AT T Lo N L R e N L S R I R R NI

N AN SOSUACALRUNC AL L AU U B0 IS AN ISR NI SR P ™ gt mo N, .:.c e o VT, "' - .'\“‘ i)

183

SUMMARY OF SIMULATION RESULTS i

Number of modules (nodes): 4 (16D

= My S

: Failed module(s):
: NONE!

-

—_—

Falled node(s) (including those In falled modules):
\ 1 b -

i Mean message size: 8000 bits '

L Line speed all links: 19200 bits/sec :

;, Mean message interarrival time: 20000 msecs i

g Total messages generated: 8541 :

% Messages dellvered before stats: 4000 !
Messages used for statistics: 4000

Messages undelivered due to failured(s): 539

o 2w 57 1

Messages left In network: 2

i Maximum queue length: 4 msgs :
§ Node with max queue: 15 ;
ﬁv Link with max queue: 2 f
3 Mean queue length: 0.005275 msgs z
§~ Maximum path length: 6 hops E
R Mean path length: 2.4210 hops .
ﬁ Mean response time per message: 1113.0168 msecs ,
5 Mean delay/hop: 459.7344 msecs .
? Mean transmission time/hop: 416 msecs ‘
3 Mean queueing time/hop: 43.7344 msecs q
E" Mean link busy time: 70795.8750 msecs E
% Probablllity of link busy (rho): 0.049145

? Probability msg does not queue: 0.950855 :
n \

1) 1 y L
K . % . g - M AT R AN AT -
OO NN MO s LT KM A WORC 2 M OGO R R l;‘l- Ty ".'\ N

B [- PR
- .& ‘."\\‘.*N .

VAR SV YOt TON U IO TGl TUE TUR RO UK T L U R PO T R R T R I N R YOO T WU WO

T

184

SUMMARY OF SIMULATION RESULTS

L=

B Number of modules (nodes): 5 (20)

ﬁ Fajiled module(s): ;
! NONE! E
‘ Failed node(s) (including those in falled modules):

; :)
5; Mean message size: 8000 bits X
4: Line speed all links: 19200 bits/sec \
& Mean message interarrival time: 20000 msecs ;
g Total messages generated: 8412 E
5 Messages dellvered before stats: 4000 i
g; Messages used for statistics: 4000)
§ Messages undelivered due to failure(s): 408

. Messages left in network: 4

?ﬁ Maximum queue length: 6 msgs ;
% Node with max queue: 3 ;
" ‘
o Link with max queue: 3 '
% Mean queue length: 0.009907 msgs

g Maximum path length: 6 hops :
& Mean path length: 2.9467 hops ‘
g Mean response time per message: 1395.0864 msecs :
§ Mean delay/hop: 473.4324 msecs

i Mean transmission time/hop: 416 msecs

ﬁ Mean queueing time/hop: 57.4324 msecs

i. Mean link busy time: 66087.1875 msecs :
% Probablllty of link busy (rho): 0.059703 3
2 Probability msg does not queue: 0.940297

2

; ;
3

Teto 'y 1 ¥ OO BTN C O b O L LN { " N M T,
R X R R R e S DR R DA TR T, TR T TS T o TR O TRO T WO RN RGNS M TN AT A VAT

B g e e e o

I N S O WL M T v 53 g\ §3 4¢ PSS S WP Al

185

SUMMARY OF SIMULATION RESULTS

Number of modules (nodes):

Failed module(s):
NONE!

7 (28)

Falled node(s) (including those In falled modules):

1
Mean message size:
Line speed all links:
Mean message interarrival time:
Total messages generated:
Messages delivered before stats:

Messages used for statistics:

Messages undelivered due to failure(s):

Messages left In network:
Maximum queue length:

Node with max queue:

Link with max queve:

Mean queue length:

Maximum path length:

Mean path length:

Mean response time per message:
Mean delay/hop:

Mean transmlssion time/hop:
Mean queueing time/hop:

Mean 1link busy time:
Probablility of 1ink busy (rho):

Probability msg does not gueue:

8000 bits
19200 bits/sec
20000 msecs
8324

4000

4000

321

3

7 msgs

18

4

0.02340! msgs
8 hops

3.9890 hops
2132.7830 msecs
534.6660 msecs
416 msecs

118.6660 msecs

64512.3320 msecs

0.08303!1
0.916969

-
» > - .-
e e e

B S
-

AR DTDT

v - - b & B
L Tt s R A

P

o ap b =

Q‘Q-. -

-

186
SUMMARY OF SIMULATION RESULTS

Number of modules (nodes):

Failled module(s):
NONE !

8 (32)

Failed node(s) (including those In falled modules):

1
Mean message slze:
Line speed all links:
Mean message interarrival time:
Total messzges generated:
Messages delivered before stats:

Messages used for statistics:

Messages undelivered due to failure(s):

Messages left In network:
Maximum queue length:

Node with max queue:

Link with max queue:

Mean queue length:

Maximum path length:

Mean path length:

Mean response time per message:
Mean delay/hop:

Mean transmission time/hop:
Mean queueing time/hop:

Mean link busy time:
Probabllity of 1link busy (rho):

Probability msg does not queue:

W' - R R A \
RO N SN OOMGAONINWIOASC IR, PO RN DM M A n Do L X s XY

8000 bits
19200 bits/sec
20000 msecs
8285

4000

4000

274

11

6 msgs

3

3

0.023843 msgs
10 hops

4.4765 hops
2284.6470 msecs
510.3645 msecs
416 msecs
94.3645 msecs
60035.6055 msecs
0.089249
0.910751

Y A n‘.'- ! h‘.\ Y n ' MR N‘ o

187

SUMMARY OF SIMULATION RESULTS

PR,

PR

LA

Number of modules (nodes):

Failed moduled(s):
NONE'!

10 (40D

Failed node(s) (including those in falled modules):

1
Mean message size:
Line speed all links:
Mean message interarrival time:
Total messages generated:
Messages delivered before stats:
Messages used for statistics:
Messages undelivered due to failure(s):
Messages left In network:
Maximum queue length:
Node with max queue:
Link with max queue:
Mean queue length:
Maximum path length:
Mean path length:
Mean response time per message:
Mean delay/hop:
Mean transmission time/hop:
Mean queueing time/hop:
Mean link busy time:
Probabll!ity of link busy (rho):

Probability msg does not gueue:

0 0 - . . . LY. ¥ ’ LV'S, b
R N o B I T O D A O L R A G HER A KON O T O XA XA OO K MR R M IR, AR

8000 bits
19200 bits/sec
20000 msecs
8234

4000

4000

213

21

8 msgs

t4

4

0.047172 msgs
12 hops

5.4438 hops
3220.2656 msecs
591.5527 msecs
416 msecs

175.5527 msecs

59691.8906 msecs

0.112657
0.887343

RO

- e v o

5 o

B S R

-

-
Faad

. - -

£

T ap

_ Y
Al RNy, I' .,A‘l'u ‘p‘l"‘

-~

-

SATE LIt IRt R LA LR U A K KA AR AR 5.0 M . e g e

188

SUMMARY OF SIMULATION RESULTS

Number of modules (nodes):

Fafled module(s):
NONE'!

1t (44)

Falled node(s) (including those in falled modules):

1
Mean message size:
Line speed all links:
Mean message interarrival time:
Total messages generated:
Messages dellvered before stats:
Messages used for statistics:
Messages undelivered duvue to fallure(s):
Messages left In network:
Maximum queue length:
Node with max queue:
Link with max queue:
Mean queue length:
Maximum path length:
Mean path length:
Mean response time per message:
Mean delay/hop:
Mean transmlsslon time/hop:
Mean queueing time/hop:
Mean 1link busy time:

Probabllity of 1ink busy (rho):

Probability msg does not queue:

8000 bits
19200 bits/sec
20000 msecs
8227

4000

4000

184

43

11 msgs

3

4

0.082228 msgs
12 hops

6.0747 hops
4200.8203 msecs
691.5215 msecs
416 msecs
275.5215 msecs
61959.9297 msecs
0.133229
0.86677!1

N
LTINS

P A -4 ry s W

Ve -

- oy

R

FAADt L raar oy~ —ary

e LT R DO -Hlmj

189 g

SUMMARY OF SIMULATION RESULTS $

%]

]

Number of modules (nodes): 13 (52 Y
’

Faliled module(s): M
NONE! v

Failed node(s) (including those iIn falled modules):
1 y,

Mean message size: 8000 bits f
Line speed all 1inks: | 19200 bits/sec ¢
Mean message interarrival time: 20000 msecs 3
Total messages generated: 8216 ?
Messages delivered before stats: 4000 (
Messages used for statistics: 4000 '

P e

Messages undelivered due to fajilure(s): 152

Messages left In network: 64 #
Maximum queue length: 13 msgs ?
Node with max queue: 2 h
Link with max queue: 4 3
Mean gqueue length: 0.107082 msgs

Maximum path length: 14 hops é
Mean path length: 6.9545 hops a
Mean response time per message: 5011.0195 msecs \
Mean delay/hop: 720.5432 msecs ;
Mean transmission time/hop: 416 msecs)
Mean queueing time/hop: 304.5432 msecs .
Mean link busy time: 58951.1328 msecs f
Probabllity of link busy (rho): 0.14r726 '
Probability msg does not queue: 0.853274 =

.....

190
SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 14 (56)

Failed module(s):
NONE !

Falled node(s) (including those in failed modules):
1

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec !

Mean message interarrival time: 20000 msecs

Total messages generated: 8211

Messages dellvered before stats: 4000

5

Messages used for statistics: 4000)

Messages undelivered due to fallure(s): 152

-~y o A

Messages left In network: 59

Maximum queue length: 14 msgs

Node with max queue: 46

Link with max queue: 4

Mean queue length: 0.136752 mzqgs

16 hops

Maximum path length:

Mean path length: 7.5758 hops

Mean response time per message: 5898.8047 msecs

Mean delay/hop: 778.6428 msecs

Mean transmisslion time/hop: 416 msecs

Mean

quevueing time/hop: 362.6428 msecs

Mean 1ink busy time: 58466.6875 msecs

Probability of link busy (rho): 0.158095

Probabillity msg does not queue: 0.841905

..........

191 1

SUMMARY OF SIMULATION RESULTS y

"

}

Number of modules (nodes): 16 (64) }
l“

Failed module(s): "
NONE! W

Failed node(s) (including those In falled modules):
1 by

Mean message size: 8000 bits \
Line speed all links: 19200 bits/sec]
Mean message interarrival time: 20000 msecs é
Total messages generated: 8247 §
Messages dellvered before stats: 4000 2
Messages used for statistics: 4000 '

. -..\‘~‘

Messages undelivered due to fallure(s): 134

Messages left in network: 113

Maximum queue length: 16 msgs Y
Node with max queue: 3 J
Link with max queuve: 4 i
Mean queue length: 0.177909 msgs R
Maximum path length: 18 hops ?
Mean path length: 8.5378 hops :
Mean response time per messaae: 7131.1797 msecs f
Mean delay/hop: 835.2527 msecs ﬁ
Mean transmission time/hop: 416 msecs 3
Mean queueing time/hop: 419.2527 msecs ?
Mean link busy time: 57600.7891! msecs s
Probablility of link busy (rho): 0.174405 3
Probability msg does not queue: 0.825595 s

".’b;‘.q,l’ -“‘. o cl.. "

192

SUMMARY OF SIMULATION RESULTS

Number of modules (nodes):

Falled module(s):
NONE'!

Falled node(s) (including those
1

Mean message size:
Line speed all links:
Mean message interarrival time:
Total messages generated:

Messages delivered before stats:

Messages used for statistics:

Messages undelivered qQue to failure(s):

Messages left In network:
Maximum queue length:
Node with max queue:
Link with max queue:

Mean queue length:

Maximum path length:

Mean path length:

Mean response time per message:
Mean delay/hop:

Mean transmission time/hop:
Mean queueing time/hop:

Mean link busy time:
Probablility of link busy (rho):

Probability msg does not queue:

chy ol

TR N ™R RUYURYD

17 (68)

in falled modules):

8000 bits

19200 bits/sec
20000 msecs
8204

4000

4000

99

105

19 msgs

3

4

0.203690 msgs
18 hops

8.9870 hops
8020.2188 msecs
892.4243 msecs
416 msecs
476.4243 msecs
56963.7383 msecs
0.181232

0.818768

AT Pt
DI I AN N

£ S N

IO SR, IR K PTI0 RKN s ¥ ia¥ - ay el sl - il el Pab cad \a® vad v V2 VAl ea¥ vy - a9 vad ml ral oy emi 2P Vb 4 ol i a vl 19 0p% g sy

N 193
SUMMARY OF SIMULATION RESULTS

; Number of modules (nodes): 19 (76) (

J Failed module(s):

' NONE!

i Faile? node(s) (including those in failed modules):

&

gg Mean message size: 8000 bits

S Line speed all llinks: 19200 bits/sec
Mean message Interarrival time: 20000 msecs

ﬁ’ Total messages generated: 8233

3 Messages dellivered before stats: 4000

3 Messages used for statistics: 4000

a Messages undelivered due to failure(s): 109

ﬁ: Messages left In network: 124

g Maximum queue length: 21 msgs

? Node with max queue: 66

g Link with max queue: 4

ﬁ Mean queue length: 0.262452 msgs

% Maximum path length: 20 hops

& Mean path length: 10.0020 hops

§ Mean response time per message: 9457.1758 msecs

;@ Mean delay/hop: 945.,5283 msecs

b Mean transmisslon time/hop: 416 msecs

g Mean queueing time/hop: 529.5283 msecs

g Mean link busy time: 55894.4102 msecs

- Probabllity of link busy (rho): 0.207695

? Probability msg does not queve: 0.792305
&

) .
Ry ROOOONE) 5 h L% b)
RN VOO R O O OUOUOUOC OO D OO M O M UL XM g X3¢ X3

MR AU R LN N AN A T N NN IS - I IRER Y “abiatn Ve Ba Fab (a0 Far B Gat B08 8.8 90 0 0 R $ 0.0 Rt ot va ¢ 2 8% §% », UYL

194
SUMMARY OF SIMULATION RESULTS
Number of modules (nodes): 20 (80)
Failed module(s):
NONE!
Faile? node(s) (including those In faliled modules):
Mean message size: 8000 bits
Line speed all llnks: 19200 blits/sec
Mean message interarrival time: 20000 msecs
Total messages generated: 8261
Messages delivered before stats: 4000
Messages used for statistics: 4000
Messages undelivered due to failure(s): 107
Messages left I{n network: 154
Maximum queue length: 34 msgs
Node with max queue: 70
Link with max queue: 4
Mean queue length: 0.338484 msgs
Maximum path length: 22 hops
Mean path length: 10.5735 hops
; Mean response time per message: 11118.5859 msecs
‘ Mean delay/hop: 1051.5520 msecs
Mean transmlssion time/hop: 416 msecs
: Mean queueing time/hop: 635.5520 msecs
i Mean 1ink busy time: 56719.5430 msecs
Probablility of 1llnk busy (rho): 0.223421
Probability msg does not queue: 0.776579

o] A0 at T A A G R I L A e T AT AT AT AT R T R BT L T N AL & A S
R A N N X e Il S L By S O 5™ N RN R AR R = L A e n R AT

LENNCACS MR CEN S (M PRPELE VATV T U X U X N T R O O A T U T P L N U NN AR S AR R AR R A O O OOt

4 (16)

8000 bits
19200 bits/sec
20000 msecs
92176

4000

4000

1172

4

6 msgs

11

4

0.011125 msgs
10 hops

3.0717 hops
1459.3381 msecs
475.0837 msecs
416 msecs
59.0837 msecs
96035.6875 msecs
0.057209
0.942791

195
5 SUMMARY OF SIMULATION RESULTS
g Number of modules (nodes):
%\ Failed module(s):
D NONE!
" Failed node(s) (including those In falled modules):
g boe
% Mean message size:
¢ Line speed all llnks;
g Mean message interarrival time:
§f Total messages generated:
i Messages dellvered before stats:
;5 Messages used for statistics:
g Messages undelivered due to failure(s):
R Messages left In network:
%; Maximum queue length:
;sf Node with max queue:
& Link with max queue:
;5:? Mean queue length:
§ Maximum path length:
& Mean path length:
g; Mean response time per message:
g Mean delay/hop:
X Mean transmission time/hop:
i; Mean queueing time/hop:
3% Mean link busy time:
. Probabllity of 1ink busy (rho):
>$ Probability msg does not queue:
o

D 0 S A TR A By T CI N~ O D XA OO M X AR T PN M M T N K O LR AL LN A O

’ A "S\.! Yoty

T T e e

PN T,

-

-

ST

i - -

S . Y

- PR
P s e

4
\
v

L]
OOLOT] K Y, . 1,0 AN "Wt ’ e ; o » R
D O VLSS DN "'\ .‘A ROLIURIUCY MO XN N KA T # '(AN AN RULS A N LY v #.4%. l.“.. 0..'. LA > W 40,000,800, 00,0 '. LK) s e

196

SUMMARY OF SIMULATION RESULTS

Number of modules (nodes):

Failed module(s):
NONE!

v et g W 9, L] » » Yo YO

5 (20)

Falled node(s) (lncluding those In falled modules):

1 6
Mean message size:
Line speed all links:
Mean message interarrival time:
Total messages generated:
Messages dellvered before stats:
Messages used for statistics:
Messages undelivered due to failure(s):
Messages left In network:
Maximum queue length:
Node with max queue:
Link with max queuve:
Mean queue length:
Maximum path length:
Mean path length:
Mean response time per message:
Mean delay/hop:
Mean transmission time/hop:
Mean queueing time/hop:
Mean link busy time:
Probablility of link busy (rho):

Probability msg does not queue:

8000 bits
19200 bits/sec
20000 msecs
8930

4000

4000

926

4 msgs

o W w

.009645 msgs

6 hops

3.0833 hops
1450.6011 msecs
470.4780 msecs
416 msecs
54.4780 msecs
75300.8750 msecs
0.060669
0.93933!1

“aVh g¥A 295 a¥iaty

R e o a

. S
- - T W -

Rl o,

-
e

-
-

REC S N

I I oo™

-t o,

[&

P Sr S

RN AN R RN ARG AT R RN R VR NN L N N P N I Y U A R kL Y ICV AN Oab B0 D 08 8 ' RAE ST NN YU N WY

197

SUMMARY OF SIMULATION RESULTS

ot Spa ey g

Number of modules (nodes): 7 (28) i
Failed module(s): X
NONE! '
. Failed node(s) (including those in faliled modules): :
: boe :
; Mean message size: 8000 bits f
k Line speed all links: {9200 bits/sec)
M Mean message interarrival time: 20000 msecs '
E Total messages generated: 8672
.f Messages dellvered before stats: 4000
% Messages used for statistics: 4000 ;
g Messages undelivered due to failure(s): 664 ‘
8 Messages left In network: 8
;$ Maximum queue length: 6 msgs
% Node with max queue: 3 [
g Link with max queue: 3
§; Mean gueue length: 0.023479 msgs N
; Maximum path length: . 8 hops g
Ry Mean path length: 4.1257 hops :
»% Mean response time per message: 2193.5305 msecs }
s Mean delay/hop: 531.6685 msecs ;
2 Mean transmlission time/hop: 416 msecs
5 Mean queueing time/hop: 115.6685 msecs]
;2 Mean link busy time: 69719.1875 msecs
3 Probablility of link busy (rho): 0.081541
[Probability msg does not queue: 0.918459

“ N . AR l' ' 3 WAL v - - . . .
O AR OSSO R POUN MM I T U A OOAM R AT DO OO b 000000, Lot .l“.!'j,l!lti,‘., MW INON _. e h.ﬂ..!.,.}.!

MR PO P I LS WG WY 1Y g M A AN RIS FUNYIN R LA A N TN N Y U NUY R Y RN} §8.80.0 0.9 8Pt St §a" $57 $o° ¢

198

SUMMARY OF SIMULATION RESULTS

Number of modules (nodes):

Failed module(s):
NONE'!

Failed node(s) (including those in falled modules):
1 6

Mean message size: 8000 bits

19200 bits/sec

T TVl AP

Line speed all links:

Mean message interarrival time: 20000 msecs .

Total messages generated: 8569

4000

Messages delivered before stats:

Messages used for statistics: 4000

% Messages undelivered due to fallure(s): 558

e e e & W W

Messages left In network: 11

Maximum queue length:

% Node with max queue: 4

Link with max queue: 4
0.035435 msgs

Mean queue length:

10 hops

Maximum path length:

Mean path length: 4.5968 hops

Mean response time per message: 2638.5215 msecs

Mean delay/hop: 573.9971 msecs)

Mean transmlisslon time/hop: 416 msecs

' Mean queueing time/hop: 157.9971 msecs ;

Mean link busy time: 68497.0625 msecs

Probablllity of 1lnk busy (rho): 0.097125 \

Probability msg does not queue: 0.902875

(
1080 G e, 100y A (Y Y Vg b e A Y T T Yed a0t ettty o D T ay WLy AT R T, TN

e X PP
T NN,

D

AR e
" e e

-

L

PO S

LX)
RGO

LNt

PRI U U AT UGN L S AP AP LIS Il BT AN LT LT P L P LA L L L U LA SR LA R R R L A T N A AT N T Oy

199
SUMMARY OF SIMULATION RESULTS

Number of modules (nodes):

Failed module(s):
NONE!

10 (40)

Failed node(s) (including those in failed modules):

1 6
Mean message size:
Line speed all links:
Mean message interarrival time:
Total messages generated:
Messages delivered before stats:
Messages used for statistics:
Messages undelivered due to failure(s):
Messages left In network:
Maximum gueue length:
Node with max queue:
Link with max queue:
Mean queue length:
Maximum path length:
Mean path length:
Mean response time per message:
Mean delay/hop:
Mean transmission time/hop:
Mean queueing time/hop:
Mean link busy time:
Probablllity of link busy (rho):

Probability msg does not queue:

. . r, , ; I Y . Ty »
e A B D G OO O, o T AR TN RN)

8000 bits
19200 bits/sec
20000 msecs
8462

4000

4000

443

19

10 msgs

14

4

0.069628 msgs
12 hops

5.7025 hops
3823.7053 msecs
670.5313 msecs
416 msecs
254.5313 msecs
66301.7500 msecs
0.121283
0.878717

k.98, 20 %48 *aP val .4 +

i

O AT AT NS R A Tt AT

-t

DL e e

Pl A

[y

R

-
o T

i

4

AR KN

ANANANAE R KM NN s RN

200

SUMMARY OF SIMULATION RESULTS

Number of modules (nodes):

Failed module(s):
NONE¢

MR UW UW UN WA AT AN AN AU LAV O X

el W W ¢ wal'd [N ANSERNK)

11 (44)

Failed node(s) (including those In falled modules):

i 6
Mean message size:
Line speed all links:
Mean message Iinterarrival time:
Total messages generated:
Messages dellvered before stats:

Messages used for statistics:

Messages undelivered due to failure(s):

Messages left In network:
Maximum gueue length:

Node with max queue:

Link with max gueue:

Mean queue length:

Maximum path length:

Mean path length:

Mean response time per message:
Mean delay/hop:

Mean transmission time/hop:
Mean queuelng time/hop:

Mean link busy time:
Probablility of link busy (rho):

Probability msg does not queue:

8000 bits

19200 bits/sec
20000 msecs
€399

4000

4000

361

38

9 msgs

3

4

0.076738 msgs
12 hops

6.0798 hops
4060.3425 msecs
667.8469 msecs
416 msecs
251.8469 msecs
63483.0313 msecs
0.131012

0.868988

R BALAGS(CO WY WP ' v v
AEEUCICH YO K .",.’a',M‘q'a,Jh‘.'s‘_\‘l‘..'.‘;'\‘.h'.'t.q'l’c‘!, LI R R R =L RORY n‘ .o.' O ‘.;".a‘l. O.J.\.-'l'o"!s.ln h -'l. -Ao'l.u :

‘B 2’b ath g Yo gug ¥

- - -

-

[
\

- ..

L L.

S T o A e

D w e > -l

&

\ o ™ ws
& 0"‘-‘[; \ AN

Yo 80y $ip 88 005 03 600 453 AT a Bro s RN 4 B0 @

20t
SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 13 (52)

Failed module(s):
NONE'¢

Falled node(s) (including those in falled modules):
1 6

Mean message slze: 8000 bits

Pay—gr—ay—ur—arm

Line speed all links: 19200 bits/zec

Mean message interarrival time: 20000 msecs

Total messages generated: 8403

Messages dellvered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 342

Messages left in network: 61

Maximum gueue length:

Node with max quevue: 28

Link with max queue: 4

0.118544 msgs

Mean queue length:

14 hops

Maximum path length:

~ Mean path length: 7.1685 hops i

Mean response time per message: 5394.8242 msecs

i Mean delay/hop: 752.5735 msecs

Mean transmission time/hop: 416 msecs

) Mean queueing time/hop: 336.5735 msecs

e

Mean link busy time: 63276.5391 msecs

Probability of link busy (rho): 0.149884

Probability msg does not gqueue: 0.850116)

& - - I e) i)) .
ot ST T e, DR DRORORC LN IRDCTAALX XN BTN R X .‘V‘"ﬁ’.‘!’. ' i UM M MM o’.’s‘-‘ﬂ.o‘.‘ch‘;‘ XM N ey o Mo W MO o"’

RNV U N L NV RV TV WU UL I WU TG W W RN T TR S R T N I T OO OO T o

202

SUMMARY OF SIMULATION RESULTS

14 (56)

Number of modules (nodes):

Failed module(s):
NONE!

Bl - - o e s

Falled node(s) (including those in failed modules):
: 1 6

8000 bits

Mean message size:

Line speed all links: 19200 bits/sec

Mean message interarrival time: 20000 msecs

Total messages generated: 8399

- .-

Messages dellvered before stats: 4000

Messages used for statistics: 4000

Messages undelivered due to failure(s): 312

Eare oy)

Messages left In network: 87

Maximum queue length:

7 Node with max queue: 46 '

Link with max queue: 4 "

Mean queue length: 0.146285 msgs

S

Maximum path length: 16 hops

PR S

o es
25 S T Tm T
e - - -

Mean path length: 7.6012 hops

4 Mean response time per message: 6066.6914 msecs w
§ 4
o Mean delay/hop: 798.1174 mse:s A
. .
K Mean transmission tlme/hop: 416 msecs '

Mean queueing time/hop: 382.1174 msecs

3
~

Mean link busy time: 61233.7227 msecs

R R
A e v

Probabllity of link busy (rho): 0.158483

Probability msg does not queue: 0.841517

BRSNS ONDEDIDODOCGONCN 0 Wbt

080,00, 800,070,070, 470,07 €0 005 0% 079 09, 00 00 000, 18 a8, g, o b, (]

......

)

o o

N e L

] . - - r'S - - E - . - - .
AN IO R N T N N e D O M PO N NSO O LS ML M LM A M T W o M AN .

T R R AR R R I R R RN NNy L U rnremme

203
SUMMARY OF SIMULATION RESULTS

Number of modules (nodes):

Failed module(s):
NONE!

16 (64)

Falled node(s) (including those In falled modules):

1 6
Mean message size:
Line speed all links:
Mean message interarrival time:
Total messages generated:
Messages dellvered before stats:
Messages used for statistics:
Messages undelivered due to failure(s):
Messages left In network:
Maximum queue length:
Node with max queue:
Link with max queuve:
Mean queue length:
Maximum path length:
Mean path length:
Mean response time per message:
Mean delay/hop:
Mean transmission time/hop:
Mean queueing time/hop:
Mean link busy time:
Probability of link busy (rho):

Probability msg does not queue:

8000 bits
19200 blts/sec
20000 msecs
8379

4000

4000

263

116

24 msgs

4

4

0.190274 msgs
18 hops

8.5920 hops
7514.4414 msecs
874.5857 msecs
416 msecs
458.5857 msecs
60081.3164 msecs
0.174970
0.825030

I T Ay

-

O o o

- -

ot
]

-4
¥
A
‘

PR TR SN VLRSI 3 I PG St POL L KK U SR AR R AR A LA LY

204

SUMMARY OF SIMULATION RESULTS

Number of modules (nodes):

Failed module(s):
NONE!

17 (68)

Fatled node(s) (including those In falled modules):

1 6
Mean message size:
Line speed all links:
Mean message interarrival time:
Total messages generated:
Messages dellvered before stats:
Messages used for statistics:
Messages undelivered due to failure(s):
Messages left In network:
Mazximum queue length:
Node with max queue:
Link with max queue:
Mean queue length:
Maximum path length:
Mean path length:
Mean response time per message:
Mean delay/hop:
Mean transmission time/hop:
Mean queueing time/hop:
Mean link busy time:
Probablllity of link busy (rho):

Probability msg does not queue:

;f il] W) OO0 i WY N o W\ "
a4 M T, R N e A T S i S R i R TR e ooy

8000 bits
19200 bits/sec
20000 msecs
837t

4000

4000

242

129

20 msgs

3

4

0.234719 msgs
18 hops

9.2028 hops
8661.4492 msecs
941.1804 msecs
416 msecs

525.1804 msecs

59695.0625 msecs

0.189571

0.810429

"o,

B Vel ad e) Tl 0ad SR LD AR AR O el R OB TR B 00 0 0D a0 R R el e

205
SUMMARY OF SIMULATION RESULTS

Number of modules (nodes):

Failed module(s):
NONE!

19 (76)

Failed node(s) (including those In failed modules):

1 6
Mean message size:
Line speed all llinks:
Mean message interarrival time:
Total messages generated:
Messages dellvered before stats:
Messages used for statistics:
Messages undelivered due to failure(s):
Messages left In network:
Maximum queue length:
Node with max queue:
Link with max queue:
Mean queue length:
Maximum path length:
Mean path length:
Mean response time per message:
Mean delay/hop:
Mean transmlission time/hop:
Mean queueing time/hop:
Mean link busy time:
Probablllity of link busy (rho):

Probability msg does not queue:

8000 bits
19200 bilts/sec
20000 msecs
8403

4000

4000

222

181

27 msgs

4

4

0.305433 msgs
20 hops
10.1257 hops

10277.6055 msecs

1014.9968 msecs
416 msecs

598.9968 msecs

58196.9180 msecs

0.209996

0.790004

e

-

AN LA LA LA L LAY LA A WA LATTATT AT AT R A X R IUTE N AT ‘D 25 25 0 2°L" R a¥E 2% 190 a2 ol V¢’ ata®ala’ o F2t st -

s 8) oy e oy

206

SUMMARY OF SIMULATION RESULTS

- . e

Number of modules (nodes): 20 (80))

Ly

-
-

Failed module(s):]
NONE! : '

-
Py

Failed node(s) (including those in faliled modules):

; 16]
& Mean message slize: 8000 bits :
k4 0
! Line speed all links: 19200 blts/sec -

Mean message Interarrival time: 20000 msecs "

Total messages generated: 8382

Messages deli{vered before stats: 4000 }

Messages used for statistics: 4000

Messages undellvered due to failure(s): 195 !

Messages left in network: 187

length: 26 msgs

Maximum queue

Node with max queue: 70

Link with max queue: 4

0.378540 msgs

Mean queue length:

22 hops

Maximum path length:

Mean path length: 10.6435 hops

Mean response time per message: 12197.5586 msecs '

) Mean delay/hop: 1146.0100 msecs

Mean transmission time/hop: 416 msecs

Mean queueing time/hop: 730.0100 msecs

Mean link busy time: 58287.7930 msecs

Probability of link busy (rho): 0.224814

Probability msg does not queue: 0.775186

;,‘n'l,.'o,.'lfq Eg 1.,.'05. ‘,."..‘i‘g I‘,.'!.'l‘."!.‘._. .'ln ¥ .o'l..i' .o’!.-'l’n'l.\ "

I N T AT G L AT m N s N Cu e (A ALY h
(MM (ot ; () u.'o “" ,n,c, \ \\hw ™ \ *""..

i

RIS NP SPICAT PO TUAT TOM YT PLIT TG PR I PURT YOO TN TRt TN TR R TR R A R R T R ™

207
SUMMARY OF SIMULATION RESULTS

Number of modules (nodes):

Failed module(s):
NONE!

Yo oaY s Wt @ Fa R ks ats Dg B2 6

4 (16)

Failed node(s) (including those In failed modules):

1 6 11
Mean message size:
Line speed all llinks:
Mean message interarrival time:
Total messages generated:
Messages dellvered before stats:
Messages used for statistics:
Messages undelivered due to fallure(s):
Messages left In network:
Maximum queue length:
Node with max queue:
Link with max qQueve:
Mean queue length:
Maximum path length:
Mean path length:
Mean response time per message:
Mean delay/hop:
Mean transmission time/hop:
Mean queueing time/hop:
Mean link busy time:
Probabllity of link busy (rho):

Probability msg does not queue:

" L
REHCRVHLHERLR T ()

8000 bits

19200 blts/sec
20000 msecs
9907

4000

4000

1903

4

7 msgs

12

4

0.014812 msgs
10 hops

3.3982 hops
1738.7966 msecs
511.6741 msecs
416 msecs
95.674! msecs
120257.7500 msecs
0.062417

0.937583

Q'l.‘ ' n.“) 13 \'

L

GACAIY

ISTAPSNT BN WA UCUISE PP ML) WALSTAR SPL LI WA W WP . W L U WU W W MU WU R A T I I R R R O T

X 208

b SUMMARY OF SIMULATION RESULTS

Number of modules (nodes):

5 (200

8000 bits

: Failed module(s):

4 NONE!

. Falled node(s) (including those In falled modules):
§ 1 6 11

i Mean message slize:

n

Line speed all links:

5 Mean message interarrival time:
zi'

5: Total messages generated:

4,

i)

i Messages dellvered before stats:

(o

Messages used for statistics:

-
-’

_g Messages undelivered due to failure(s):
E: Messages left in network:

ia Maximum queue length:

%. Node with max gqueue:

" Link with max queue:

g Mean queue length:

éj Maximum path length:

‘ Mean path length:

% Mean response time per message:
?i Mean delay/hop:

? Mean transmission time/hop:

} Mean queueing time/hop:

ﬁ Mean link busy time:

3 Probablllity of link busy (rho):
;& Probability msg does not queue:
;

19200 bits/sec
20000 msecs
9470

4000

4000

1463

7

6 msgs

16

4

0.010891 msgs

7 hops

3.1080 hops
1486.4016 msecs
478.2502 msecs
416 msecs
62.2502 msecs
83398.1250 msecs
0.060693
0.939307

TR

4|
[

AWLASONOBNOBORO000000 . D { Tl T B R R o,)
Cate M A ey 1"."Ll’l.“!."‘.’l.l‘mi.v.0‘|.l.l A ‘!i.o..l'-’l'n.b'-.t‘o.t‘n "a“'n.l’»\l'v Q.n...o l.o.l'- O .o.i'o.c.n |‘:.l‘a l. O l‘r ¥, C'l.‘c 'n Y, N,

R S N I T W R L R T R R R A R I T IR TR s o va L0a BN 2 Yat BY AN a8 2c8 igh rih %% €073 A8 D &'s

209

SUMMARY OF SIMULATION RESULTS

5 Number of modules (nodes):

Failed module(s):

7 (28)

NONE!
: Faile? noge(?: (including those in falled modules):
% Mean message size: 8000 bits
- Line speed all llnks: 19200 bits/sec
¢ Mean message interarrival time: 20000 msecs
i Total messages generated: 8987
: Messages dellivered before stats: 4000
i Messages used for statistics: 4000
: Messages undelivered due to failure(s): 983
! Messages left in network: 4
: Maximum queue length: 6 msgs
? Node with max queue: 3
i Link with max queue: 4
§ Mean queue length: 0.022754 msgs
§ Maximum path length: 8 hops
Mean path length: 4.2035 hops
é Mean response time per message: 2182.3206 msecs
§ Mean delay/hop: 519.1675 msecs
§ Mean transmission time/hop: 416 msecs
§ Mean queueing time/hop: 103.1675 msecs
% Mean 1ink busy time: 74489.6250 msecs
: Probablllty of llink busy (rho): 0.080938
E Probability msg does not queue: 0.919062
K
R
N
L R A N S s e, O A S e i e L S N e

B A e\, AV, ¢V, 4

- R e e 5"

LR N

ST e N

- -

e T

210
SUMMARY OF SIMULATION RESULTS

Number of modules (nodes):

Failed module(s):
NONE!

Failed node(s) (including those in failed modules):
1 6 11

Mean message size: 8000 bits

Line speed all links: 19200 bits/sec

Mean message interarrival time: 20000 msecs

Total messages generated: 8868

Messages dellivered before stats: 4000

Messages used for statlistics: 4000

Messages undel ivered due to failure(s): 856 \

Messages left In network: 12

Maximum queue length: 7 msgs

Node with max queue: 23

Link with max queue: 4
0.033797 msgs

Mean queue length:

10 hops

Maximum path length:

Mean path length: 4.6625 hops

Mean response time per message: 2653.2473 msecs ,

30 Mean delay/hop: 569.0610 msecs

Mean transmission time/hop: 416 msecs

Mean

queueing time/hop: 153.0610 msecs .

Mean link busy time: 72599.4375 msecs

Probablility of link busy (rho): 0.092701

Probability msg does not queue: 0.907299

- gy

¥ . . . R VA A . -
AU UTIA Y l':.l‘;,l‘;_l F ‘-’I a'l‘o. ,"l. ». '-.C'o L) O.."- .0- ',6‘.]’9 l. “‘.\‘l‘ . l‘.l"‘\.o! c.!" “n. o ‘I " W

"R - AR a")P ™ ~ L
TR, ‘(‘-‘t‘n 0% S i3 ‘.. N

DL RS R A K AN R R LN N A N T AR M R AR KRR MR RN AN N I TN UL Y vy et 6 n A R Y 0l 8%h 5% 8 F 4" . "8 24 2%) A8 a4 00 at

211

SUMMARY OF SIMULATION RESULTS

Number of modules (nodes): 10 (40D
Failed module(s):

NONE!
Falle? noge(?: (including those in failed modules):
Mean message size: 8000 bits
Line speed all links: 19200 bits/sec
Mean message interarrival time: 20000 msecs
Total messages generated: 8690
Messages dellvered before stats: 4000
Messages used for statistics: 4000

Messages undelivered due to falilure(s): 667

Messages left In network: 23
Maximum queue length: 10 msgs
Node with max queue: 37
Link with max queuve: 4
Mean queue length: 0.068149 msgs
Maximum path length: 12 hops
Mean path length: 5.7530 hops
Mean response time per message: 3837.9099 msecs
Mean delay/hop: 667.1145 msecs
Mean transmission time/hop: 416 msecs
Mean queueing time/hop: 251.1145 msecs
Mean link busy time: 70789.5000 msecs
Probabllity of link busy (rho): 0.121248
Probability msg does not queue: 0.878752

B N R L K K M o SRR Ao o g 3 e e S

L SN P WU WU I A L R PR T T AR MR R O L e v oy Jops

> 212

SUMMARY OF SIMULATION RESULTS

Number of modules (nodes):

i Failed module(s):
. NONE !

11 (44)

Falled node(s) (including those in failed modules):

1 6 11
3 Mean message size:
Line speed all links:

4 Mean message interarrival time:

Q Total messages generated:

§ Messages delivered before stats:

:% Messages used for statistics:

ﬁ Messages undelivered due to fallure(s):
* Messages left ln network:

_3 Maximum queue length:

;g Node with max queue:

at

Link with max queue:

g Mean queue length:

§ Maximum path length:

A Mean path length:

% Mean response time per message:
§ Mean delay/hop:

Mean transmission time/hop:

W Mean queueing time/hop:

2 Mean 1ink busy time:

: Probability of link busy (rho):

oy Probability msg does not queue:

DO} . B .
24500 Vit n U Uy VoW O aiet el i o i MSARCATA,

g\

8000 bits
19200 bits/sec
20000 msecs
8611

4000

4000

570

41

10 msgs

16

4

0.077202 msgs
13 hops

6.3127 hops
4213.4688 msecs
667.4536 msecs
416 msecs
251.4536 msecs
68500.6250 msecs
0.130229
0.869771

. w1 L4 LA Y. L O e W ™ Ua%e .
a '. R .'t.“.i, F"" o .A ..'l.l A v(‘

P B P

U ISR U TR U ST MU TR TSR A T T W WL I LU I U WL LN 99 o Vh 2% 22 23 %% £78 a8 £%% 252 « 2 &'L 8" '2 2% %8 2%0 2°0 8'8 2°3 'S 2% qy NR S

213

) SUMMARY OF SIMULATION RESULTS

8 Number of modules (nodes): 13 (52)

& Failed module(s):

% NONE!!

) Failed node(s) (including those In faliled modules):

Q 1 6 1t

ﬁ Mean message size: 8000 bits

i Line speed all 1inks: 19200 blts/sec

g Mean message interarrival time: 20000 msecs

% Total messages generated: 8519 (
F Messages dellvered before stats: 4000

§ Messages used for statistics: 4000

§ Messages undelivered due to failure(s): 461

3 Messages left in network: 58

g Maximum queue length: 16 msgs

? Node with max queue: 5

g Link wlth max queue: 4

$} Mean queue length: 0.127487 msgs

§ Maximum path length: 15 hops

ﬂ Mean path length: 7.2198 hops

§ Mean response time per message: 5639.7773 msecs

? Mean delay/hop: 781.1594 msecs

& Mean transmission time/hop: 416 msecs ;
% Mean queueing time/hop: 365.1594 msecs

% Mean link busy time: 65324.0664 msecs ;
K Probabllity of link busy (rho): 0.149708 ‘
g Probability msg does not gueue: 0.850292

A ‘

3
0 0 O O A A MMM MM % AR AN A N o WGy o A T8 S Mt AR RN AT (15 LA TN
B MRV PO M M OIS w ICSLIOM R OO S I IO S WSO 20 5 XY (20U Q‘.‘A‘, 4..'.', N W MR MM N N '.\ ASANAS S », AR, ﬁmﬁ_ﬁ“m&ﬁm .

LA T TSR T A TSI S 7 IR AP AR LM TER AR RIS A TR A X A AY KX ARRAA AR N Yy NEXPNRY WYY v e @%a @¥g - Y V'Y N UN Y &

-

®,

g 214

g SUMMARY OF SIMULATION RESULTS !
Number of modules (nodes): 14 (56) :
Failed module(s): '

NONE!

. Falled node(s) (including those in failed modules):

% 1 6 11

i

€,

i Mean message size: 8000 bits

" Line speed all 1links: 19200 blits/sec ;

ﬁ Mean message interarrival time: 20000 msecs

? Total messages generated: 8531 i

: Messages delivered before stats: 4000

B Messages used for statistics: 4000 .

E Messages undelivered due to fallure(s): 454

o

o Messages left in network: 77

'; Maximum queue length: 17 msgs

4

) Node with max queue: 52

oy

- Link with max queue: 4

j§ Mean queue length: 0.142565 msgs X

Il ;

fg Maximum path length: 16 hops

X

$ Mean path length: 7.6517 hops

3 Mean response time per message: 6098.0508 msecs \

))

N Mean delay/hop: 796 .9485 msecs)

)

2 Mean transmission time’hop: 416 msecs

% Mean queueing time/hop: 380.9485 msecs

i)

§ Mean 1ink busy time: 62550.7070 msecs

) .l‘

& Prcbhabllity of link busy (rho): 0.155780

;ﬁ Probability msg does not queue: 0.844220)

or

." s

W ‘

'!‘

iy

K .‘

-
»

&

’§'n'v:a"»|....|| AR ANBNTN] et o (X ¥ RS LU EE, R P)
RGN PO D0 NN WK ’i’»,.l.p'l.~.l'.-‘0.\.l.v.‘l.~'.‘n.l’a."t“‘.u 3 l'u’h'-'ﬂ"‘". WA AT A, ‘.,!‘»‘0';‘0.- LU Sl U A c.l.o‘l'.‘l’ OO

PR R R TR, WG A U LN T LY T TR R R TN

215
SUMMARY OF SIMULATION RESULTS

Number of modules (nodes):

Failed module(s):
NONE!

16 (64O

Falled node(s) (including those In falled modules):

1 6 11
Mean message size:
Line speed all llnks:
Mean message interarrival time:
Total messages generated:
Messages dellvered before stats:
Messages used for statistics:
Messages undelivered due to failure(s):
Messageé left in network:
Maximum queue length:
Node with max queue:
Link with max queue:
Mean queue length:
Maximum path length:
Mean path length:
Mean response time per message:
Mean delay/hop:
Mean transmission tlime/hop:
Mean queueing time/hop:
Mean 1link busy time:
Probablllity of link busy (rho):

Probability msg does not queue:

3 1 - , WA | W, ; : : - LW v - (¥ g N p
ll‘-“’-‘l ;‘1‘-‘3.-‘0 AN \‘-‘l‘l.\’m"’l' l!‘u. .i, n."t.. +. 0L, e, .l-'.ll‘!hh ‘,'t‘.. ..-.h‘. o X T N X “ "" \"I(‘ A '(' R \ ! "‘ DA P Ko M

8000 bits
19200 blts/sec
20000 msecs
8478

4000

4000

386

92

20 msgs

3

4

0.196746 msgs
18 hops

8.6327 hops
7608.7266 msecs
881.3792 msecs
416 msecs
465.3792 msecs
61365.2461 msecs
0.179242
0.820758

N

&)

U N AT E RO

216

SUMMARY OF SIMULATION RESULTS

Number of modules (nodes):
Failed module(s):

NONE!

t 6 11
Mean message size:
Line speed all links:
Mean message interarrival time:
Total messages generated:
Messages dellivered before stats:
Messages used for statistics:
Messages undelivered due to failure(s):
Messages left In network:
Maximum gqueue length:
Node with max queue:
Link with max queue:
Mean queue length:
Maximum path length:
Mean path length:
Mean response time per message:
Mean delay/hop:
Mean transmission time/hop:
Mean queueing time/hop:
Mean link busy time:
Probabillity of llink busy (rho):

Probability msg does not queue:

N .) d W gy ™ (P al 1 bl SN SRS A AT Tt e - p
L LN Y AN O N 0 8 0 I T R A N T N I AN VA R N Nt A AT R e

17 (68)

Falled node(s) (including those in falled modules):

8000 bits
19200 bits/sec
20000 msecs
8482

4000

4000

394

88

19 msgs

17

4

0.237917 msgs
19 hops

9.1823 hops
8741.4414 msecs
951.9932 msecs
416 msecs

535.9932 msecs

61513.1406 msecs

0.186532

0.813468

oy o

e e -

_.

292 00 s ! oW s e 45 a Y\ 097 b g mt p R A ad a8 gV et B ate ale ara st WAl Rat e B5 Dat Gat Bt Ea¥ @t Rat 1ot 28720 007080 €% o 3% 4% 8% 92 AV

217 t

SUMMARY OF SIMULATION RESULTS ¢
Number of modules (nodes): 19 (76) .
Failed module(s): E
NONE! '
Faile? noge(?; (including those {n failed modules): '
‘
Mean message size: 8000 bits f
Line speed all links: 19200 bits/sec i
Mean message interarrival time: 20000 msecs v
Total messages generated: 8524 :
Messages dellivered before stats: 4000 }
Messages used for statistics: 4000

o A S W

Messages undelivered due to failuret¢s): 328

.

Messages left In network: 196
Maximum queue length: 26 msgs)
Node with max queue: 3]
Link with max queue: 4
Mean queue length: 0.336510 msgs i
Maximum path length: 21 hops E
Mean path length: 10.2530 hops t
Mean response time per message: 10960.0195 msecs ¢
Mean delay/hop: 1068.9573 msecs
B Mean transmission time/hop: 416 msecs .
ﬁ Mean queveing time/hop: 652.9573 msecs i
g Mean link busy time: 60174.3555 msecs E
; Probablllty of 11nk busy (rho): 0.211112 '
Probability msg does not queue: 0.788888

o - s

-
'

s W
ATy

(]
' 1 Py) " ; ey - - < ANAL AT A A A A e A A AR AT S A A AL R A S \ N -
ORI " 2 M I K \.l’&.l Il .‘Qh"'l‘o,‘ '-’"’ ! DT S .c'l.a'!.ot -. .0 ek J > \ X 0‘0. ‘A" \)\ ‘- . ‘ﬁ“‘& ‘.' .0“‘

vl Wy

LR RV AF RN KN AR R LRI T OO TR

218

SUMMARY OF SIMULATION RESULTS

20 (80)

Number of modules (nodes}:

Failed module(s):
NONE!

Falled node(s) (lincluding those in falled modules):

1 6 11

Mean message size: 8000 bits

Line speed all llinks: 19200 bits/sec

Mean message interarrival time: 20000 msecs A

Total messages generated: 8481

Messages dellivered before stats: 4000 v

Messages used for statistics: 4000 :

Messages undelivered due to failure(s): 319

Messages left in network: 162 ¢

Maximum gqueue length: 27 msgs

Node with max queue: 70

Link with max queue: 4

0.418360 msgs

Mean queue length:

22 hops

Maximum path length:

Mean path length: 10.7830 hops

y Mean response time per message: 13056.2188 msecs

(]
3 Mean delay/hop: 1210.8149 msecs b

Mean

transmlission time/hop: 416 msecs

Mean queuveing time/hop: 794.8149 msecs)

Mean link busy time: 60823.9492 msecs

Probabllity of llink busy (rho): 0.227400

Probability msg does not queue: 0.772600

............

) . ~ an
AT , . s A AR A = " = e~ =B = m ®
NN AT A L AT T D T KO MO X DT L P VARG

"ol atd o) 2% s’ a' A1 AV g3 ey aTh ate v AP ATS BTE.YE a%h.a' . 2t aB.a'd o' A IR L R AU R R AU RGN T NU U N LY u~v‘!""l.

o
219 :5

/% E. SIMULATION MODEL SOURCE CODE LISTING %/ qs

#include <stdio.h> %
#include <math.h> 0
#define YES ry? s
#define CR 012 "
#define ENUFD 0444 /% to stop adding node numbers */ :g
#define ENUF 444 /% to stop inputting failures X/ oy
#define NO *n’ B
#define LOWER_NODE S /% to find start nd link col */ X
#define iSTEP 4 /% each module has four nodes %/ o
#define kSTEP 3 /¥ to connect node in resp col %/ _W
#define LOWER_PLACE 7 /%X to access position columns */ é
#define MAX_COLUMNS 19 /¥ keeps track of matrix col */ w
#define LINK_ND COL 16 /% finds next nd col for links */ ‘e
#define NXT_MDL_COL 14 /% finds next mdl col for links¥/ ol
#define NXT_ND_POSN 18 /% finds next node pos'’n col X/ .ﬂ
f#define POSITION_CALC (j + 13) 7% nodes /% used to find link nd pos'n %/ ﬁﬁ
#define LARGEST 1024 /% max size of msg_area array X/ 'ﬁ
#define INFINITY 1999999999 /% very large. number ¥/ ué
#define SERVICE_TIME (length ¥ 1000)/RATE /% time is in millisezs ¥/ <
FILE %outfile; /¥ save current n/wk topology ¥/ .&,:
FILE %fopen(); ‘;'
FILE Xinfile; /¥ restore cur n/wk topology ¥/ ’ ﬂﬁ
FILE *snapout; /% snapshot of cur topology ¥/)

FILE %savefile; /% write to stats file X/

FILE *statsfile; /¥ write to summary at end */ 4y
FILE %frequency; /¥ write to destination file X/ ag
FILE %graphit; /¥ write to graphs file X/ 5?
Ve
int POSITIONC2561C197; e
/% used to build network */ ‘
/X O - position number X/ XX
/¥ 1 - home node number X/ 2l
/¥ 2 - status of that node ¥/)
/%X 3 - home module number x/ %
/% 4 - status of that module ¥/)

/¥ 3 - directly connected ¥/ »

/% local node number */ "

/¥ 6 - status that node X/ A
/¥ 7 - pos’n number that node ¥/
/%X 8 - next dir con local nd ¥/
/% 9 - status that node ¥/
/% 10 - pos'n nmbr that ncde ¥/
/¥ 11 - last dir con local nd ¥/

/% 12 - status that node X/
/% 13 - pos’n nmbr that node ¥/
/% 14 - link module number X/
/% 15 - status link module X/

/% 16 - link node that module X/
/¥ 17 - status of link node ¥/
/% 18 - pos’'n number link nd */

o v o , v §
- 1A ORI S S M (L), A ROt * IO
LHERLIT NN 0t LGN A LA ORI o 1*' AN .0. L AT AT ML I ORE N X e Fatn, P, ettt el bty i

P T N T I N T N N O T N O R e O O Y Y UV U Y T T N VI vy t'ﬁ
X

o
{9t
%
»
K
220 o
ﬂﬁ
int PTR_ARRAYLE1L[2]; /% 3 rows to chg top/bot ptre ¥/ o
int nodes; /¥ no. of nodes in network */ »
int wmax_modules; /¥ max number of mdl desired ¥/ N
int max_numbers; /¥ number of node #'s avail */ .:
int cur_modules; /¥ number of mdls in the n/uwl ¥/ 4.
int start; /¥ starting # to expand n/wk ¥/ 's
A
int FREQL2561C21; /¥ destination address count X/
/% 0 - node &, 1 - msgs rx ¥/ 4
/% updated by save_stats func ¥/ r‘
int GFELLG41L31; /% global future events list ¥/ dgt
/¥ 0 - module number X/ ol
/¥ 1 - min time of each module ¥/ 4
/¥ 2 - node with min time x/)
int MSG_AREATLARGESTI[401; /¥ message work area X/ q&
/¥ 0 - position number ¥/ A
/% 1 - row availability flag ¥/ pio
/¥ 2 - message number 1/ y
/% 3 - message size ¥/ i
/¥ 4 - spiral flag this msg L ¥4]
/¥ 3 - direction flag */]
/% 6 - destination node */ :
/%X 7 — destination module ¥/ A
/% 8 - send time %/ "
/¥ 9 - receive time ¥/ X
/¥ 10 - wmdl # of spiral chg ¥/ »
/% 11 - mdl # of divrec’n chg #/ o
/¥ 12 - route trace pointer ¥/ o
/¥ 13-39 = route trace area ¥/ ;}
int NODE_AREACLARGESTI[601]; /% node level svr & q area */)
/¥ 0 - row number ¥/ N
/¥ 1 - node number */ 4
/¥ 2 - server number (1-4) */)
/¥ 3 - server status (0 or 1} ¥/ .t
/¥ 4 - arrival time for FEL %/ *
/% 5 - depart time for FEL 74 Z:
/¥ € - minimum of 4 and 5 */ i
/%X 7 - server queue pointer */]
/¥ 8 - MSG_AREA loc this msg ¥/ o
/¥ 9 - S9 = available @ slots */
int DIR[641[2]; /% used to set DF, */ oy
int BEGIN; /% used to set DF, source */ &5
int END; /% used to set DF, destination ¥/ t
float STATSILARGESTILS]; /% contains simulation results %/]
/¥ 0 - node_area row number ¥/ b
/¥ 1 - server max—q length ¥/ Dol
/% 2 - svr total busy time ¥/ zg
/¥ 3 - used for msg size graf %/ H¢
/¥ 4 - available for use */)
int imevent; /% contains the imminent event ¥/ .h
int min_row; /¥ row where imevent is X/ ss
W
3
NN
[
Y

LA ALAGACOOOCOACTIOUK O O Y ; 00 e -
"‘s‘ '*‘!" !‘!"‘t‘?'\‘- c‘!‘.0',‘“?‘.'!'1'!‘;02‘;'5.0. l'!'.'. i |'!.|l!‘|"‘ﬂ!.‘0. » "0.-,0 K :'.'d!.‘r"v‘ |.“'.|._ ‘..'.. oy

N e Pl
‘ A
NG

R re

PR

TR Y.

TR N)

- -

IR RN PO S M)

[RS

e
¥, 0% AN,

A AN

AR A T RN,

221

int
int
int
int
int
int
int

min_time;
CLOCK;
RATE;
mean_size;
IAT;
STABILIZE;
no_done;

int
int
int
int
int
int

no_killed;
max_msgs;
msg_ho;
location;
max_path;
stop_it;

int diri;

int clk_first_msg;
int clk_last_msg;
float total_hops;
int resp_time;
float ave_q_length;

main()
{
int c;
int i;
int k;
for (i = 0; i € 90; ++i)

printf("\n");

MR} Vel XN X

’x

/%

/%
/%
/%

/%
/%
/%
Ig 4
/%
/%
/*
/%
/%
/%
/%
/¥
/x
g 4

time of imminent event
contains the line speed

mean msg interarrival time
used to get past startup
no msgs delivered so far

contains # undeliv’d msgs
stopping criteria

number of individual msgs
location in msg work array
has the largest path number
stop run if no more q-slots
if events not at save time
used in set_params function
used
time
time

first msg is delivered
last msg is delivered
used for ave. path length
used to find ave. n/w delay
running total of all g_lens

to setup DF mtx 1 time :

1/

94
*/

¥/

¥/
¥/
*/
X/
¥/
*/
*/
*/

’
8

*/
¥/
X/
¥/
¥/

printf ("\tkikokbbiribiboobrobibbbboetoiiokokdb kb ke ek iin)

print f("\t¥

\n"

Y

printf("\t¥ WELCOME TO THE SIMULATION OF A NEW, EASILY EXPANDABLE ¥\n");
print f("\t¥ FAULT TOLERANT GENERAL PURFOSE SELF-ROUTING COMPUTER ¥\n");

print f("\tx COMMUNICATIONS NETWORK TOPDLOGY! WE BITS DO HOPE ¥\n");
printf("\t¥* YOUR EXPERIENCE WITH US IS A PLEASANT ONE. ¥\n");
print f("\tx \n");

print f ("\ Uik bk bboiooook ook kel dinn®)

print f("\n\n\n\n\n\n\n");

print f("\t\t\tPRESS RETURN TO CONTINUE!

¢ = getchar();

k = 0;

restore();

if (cur_modules == 4)
set_pointers();

clear_failures();

ll);

printf("\n\nThere are no failed nodes or modules in the network.");

- -‘!
lc..-’l.l

a98% »

Catan
e

AT S AT Y

e T A
L) Ll - -

.~ n o te "

L
N () »

W,

(TYCN PN PUM XN U8 FOR O N OO WS

- e e o ="

D

- -

- . . ohp M - -
T

LA N o N . e v e

e

-
o

L4 4

B

e v 7

A

IRFIRITNT RS TRL P AT T R AAY, U A TR TS I R R AU ST U U LA U UM AT DA U R U RN U R A R TAN AT TR R AN AT AN RTR O A Eal tal AgP ol Vot

222

printf(*\n\nAll previous failures have been cleared!'\n");
current_status();
snapshot ();

: printf("\nThe current largest node number ");
‘ printf("is %o", POSITIONLmax_numbers-11[11);
¢ printf(" at position number %d.\n", max_numbers-1);
’ repeatl: printf("\nDo you want to add node numbers? ");
. ignorel: c = getchar();
i if (c == YES) {
; k = node_nos();
§
; repeats: printf("\nDid you enter the number(s) correctly? ")
k ignore5: ¢ = getchar();
if (c == NB

goto repeati;

else if (c == CR}
goto ignore5;

A else if (c '= YES) {
} printf("\nThat was not a valid response'\n");
7 goto repeat5;
3
b
else if (c == CR)
L .
) goto ignorel;
4
; else if (c !'= NO) {
) print f("\nThat was not a valid response.\n");
: goto repeati;
3
¥
B if (k '=0)
! max_numbers = k;
. if (cur_modules '= 4) {
; repeat3: printf("\nDo you want to set up the *);
" printf("minimum 4 module network? "5
K ignore3: c = getchar();
K if (c == YES) {
start = 0;
p max_modules = 4;
‘ cur_modules = 0;
q for (i = 0; i < 4; ++i)
v nodes = build(); /% build four indep mdls X/
X next_module(); /% connect them together %/
: set_pointers(); /% set for more expans’n X/

current_status();
shapshot ();
3

g e

s,
N

) . - . o " .- .
4 , Y y YW e L o AN AT AR LIRS CIE TSy
1N AN . A St S l.l'l.l, Py '\‘ o R AR T AN LD A O A N KA AR S S S ¢ "' M .

g “,?-..n"v‘::b"'_. -

I IO NC O IO IO

¥, vl 9 g L%

MRUAUNUNUY IS UANAN

else if (c == CR)
goto ignhore3l;

else if (c '= NO { '
print f("\nThat was not a valid response'\n"); ¢

goto repeat3; s

} ¢

3

repeat7: printf("\nDo you want to alter ");
N) printf("the number of modules(nodes)? b
9 ighore7: ¢ = getchar ();

0 if (c == YES))
alter ();

else if (c == CR)
goto ignore7;

elge if (c '= NOD

J '
Kl printf("\nThat was not a valid response'\n");

W goto repeat7;

3

/% The following portion of the program sets up the existing topology %/
/% with failures if desired, and prepares to send messages over the %/
/% network. ¥/

repeat10: printf("\nDo you want the operational network to have"); '
printf(” failed nodes or modules? "); i
c = getchar (};

EAR AR

-
-

ighorelO:

if (¢ == YES) {
failure_setup(); m
§ current_statusQ);)

snapshot ();

PR

3

else i1f (c == CR)
goto ignorel(;

CXC

-~

! else if (c !'= NO { A
Y printf("\nThat was not a valid response!\n");

< goto repeatl10;

N }

repeatB: printf(“\nAre you ready to send ");
h printf("traffic over the network? ")
ignoreB: ¢ = getchar(); \

== NO) {
print f("\nDo you want to alter the network?

if (c
repeat9:

");

¢ Ly @ . N N . .
Yy 0 ' L PV IS, -] o " f 4 0y L4 o W, =", o
BONGAGHE0 SOHK S S ARG O NS AT I R P N T N et T A A T i) -‘l .o'l.'} t‘o i ,!'I.- N -‘l.

Sty aVa EYa 0 Bt AVa §Te 8% 5Va 8% B%a 8% 875 BFx %9 0% 479 059 540 0% F g U9 @ p 0 9 0 g 7P ¥ §.A g ¢ ot Bt

224

ighore9: c = getcharO);
if (c == YES) {
clear_failures();
printf("\nAll previous failures ")j
print f("have been cleared'\n");
alter (3;
goto repeati0;
b

if (¢ ==CR)
goto ignore9;

if (c == NO)
goto end;

{
printf("\nThat was not a valid response!");
gotoc repeat9;
2
3

else if (c == CR)
goto ignoreB;

T
L Em e b e e et

else if (c '= YES) {
printf("\nThat was not a valid response!\n"};
goto repeat8;

>

}

o
N
,l

simulate ()
save();

node_nos ()

/% This function is used to load node nunbers into the matrix. It is %/
/% called by the main network control program. X/

{
int i;
int data;

i = max_numbers;
scanf ("\n%o", &data);
while(data '= ENUFO) {
POSITIONCi1[11 = data;
printf("\n\t’ed 6o ", i, POSITIONLi1[11);
++i;
scanf ("%o", &data);
H
return(i);

) .
N - - . R O N ‘ r~ A NN
B R e O O IR TR T IRINTRATNTAAL S el AN T TR 2 A N TR R T N B NN A

%) h A H
AU IO N B e K

L I P G Lt T R U T G N N T N N T L T s N O I N T e I T W U W O U R WO N U WU WU

>
2
&
.:

225 0

¢
e
) .;:
)
build() !
/% This function is used to build the fully connected modules of 4 */ »
/% nds each. A separate function (next_module or add_module) adds */ \
/% these modules to the network. It’s called by the main network ctl %/ !
/% program, the alter, and partition functions. ¥/ !
: i
int i; !é:
int j; 'ﬁ

int temp; o

int k;)

int 1; ‘ %

int upper; N

int location; m
int home_module; ?
. N

i = start;]
upper = i + iSTEP; E
Py

while (i < upper) ¢ "

k = LOWER_NODE; ' W

J = 05 o

1 = LOWER_PLACE;

temp = POSITION[start1[1]; it
location = start; ,g
home_module = start/4 + 1; ?

while (j < kSTER) {)

if (temp '= POSITIONLi3C1D) {

POSITIONCi I1Ck] = temp; W
POSITIONLi1[1] = location; ﬁ
++j; "

++temp; N
++location; W
k = k + kSTEP;)
1 =1 + kSTEF; M

} A
else {]

++temp; A

++location; x

})
} "y
POSITIONLi3(3] = home_modul e; !
++i; |:0,'
} \
++cur _modul es; N
start = i;)

return(i);

current_status()

/¥ This function is used to make the decision as to whether or not to ¥/
/¥ print the current connectivity matrix. It is called by the main %/
/% network control program and the alter function. */

{
int c;

printf("\nThe current number of modules ");
printf("in the network is %d.", cur_modules);
printf("\n\nThe current number of nodes is Zd.", nodes);
print f("\n\nThe total number of node numbers");
printf(" available is %d.", max_numbers - nodes);

repeatd: printf("\n\nDo you want to see the current connectivity”);
printf(" matrix? ");

ignored4: ¢ = getchar();
if (c == YES)
print_matrix();

il die s,

else if (c == CR)
goto ignored;

-

-

)
S

else if (c '= N {
print f("\nThat was not a valid response!");
goto repeatd;
H

next_module()

/% This function connects local nds to the appropriate link nodes in ¥/
/% the next module for the minimum 4 module network. Called by the ¥/
/% main control progran. ¥/

{

int aj
int j;

By gy

o

J=0;
while (j < nodes) {

a = POSITION_CALC;
POSITIONC j1CNXT_ND_POSN]
POSITIONC jICLINK_ND_COLI
POSITIONC j1CNXT_MDL_COL]
POSITIONLaJ[NXT_ND_POSN3
POSITIONCaICLINK_ND_COL]
POSITIONLaIINXT_MDL_COL]

a;

POSITIONCaIC1];

POSITIONCalL33;
;

POSITIONC j1C1];

POSITIONL j1C31;

- - T e b Vi
U | O {1}

LN

(Y

b 7,Y) }) y p iy) W N) Y .
L ""‘I‘N ". .f‘ﬂ.‘!.:‘".‘l.!‘!’f'l‘!‘n.'-‘l'!’l'..-‘b"-.‘.:‘l'o‘t‘!‘i’,l’bl‘:‘l‘» ’:‘It!.O"Q‘:'l':‘l'!’l"l‘.‘l‘m VAt el Yy Ayt Y y '.i'l AR ‘c.t.. 5

- g "

e e e

0 e ey o

R

L o e e

R

3y e

j e

[}
¥

' A g) e AN L A AN STV T
"“f"‘."..'».' "'5' ’.' M h"’. ‘a C?‘ I(#‘. N (.-!.\ n) !. !O:‘s- Wl

LN LU WK TR TS T I W FUN T P LA LR K TR TR D AR LRI [DL R] WU WU SaTp ATA aNpy gt

227

J=J+ 2

we

alter O)

/% This function is used to decide which type of alterations will be %/
/% made to the existing network. The appropriate subfunction’s called %/
/% according to the decision made. Alter’s called by the main network %/
/% control program. ¥/

{

int c;
int i;
int j;

repeat2: printf("\nHow many modules do you want the new network");
printf(" to have? ");
scanf("4d"”, &max_modules);
printf("\nDid you enter the number correctly? "s
ighore2: c = getchar ();
if (c == ND)
goto repeat2;

else if (c == CR)
goto ignoreZ;

else if (c !'= YES) {
print f("\nThat was not a valid response!'\n");
goto repeat;
b4

if (max_modules < 4) { /¥ invalid request */
print f("\nThe network must have ");
printf(“atleast 4 modules to exist!'\n");
goto repeat2;
}
else if ((c = max_modules 7 3) == 0) { /% net’s partitioned ¥/
J = partition();
if (j==1)
goto repeat2;
else {
current_status();
shapshot ();
2}
?

else if (max_modules < cur_modules) { /% want less modules ¥/
cur_modules = 0;
start = 0;

9. .a%h o'

o R
- . -

Pt e Ao

A T A -SSR S

3 . o o’
-~ PR ot N R

> Ay aw &
.ﬁ

.

A

‘e,

2 N

-

e

AN >

" TR R L RURTLI N X v
ALy R e e e gt J’.‘:‘

o o

i) OV AT ’l!"'.“'f'.,'-‘.lv.!c o '.lqio'o . r.'»‘t'- ’N".‘t‘!'ﬁ".ﬁ"’o‘;‘c‘!‘l "\ ‘ 2 . '*'" '0-'0-.

ey gk tadoretved teB opsal ¥ Y AR AN RAN R X et AR T AR AN I N T I AN KA R XA X

228

for (i =0; i < 4; ++i)
nodes = build(};
next_module(};
set_pointers();
vhile (i < max_modules) {
nodes = build();
add_module();
++i;

cur_modules = ij;
current_status();
snhapshot ();

else if (cur_modules == max_modul es) {
printf("\nThat is how many modules you already have!\n");
goto repeat?;
¥
else if (max_modules > (max_numbers/4)) { /% out of bounds ¥/
printf("\nThere are currently a total of Zd”, max_numberc);
print f(" node numbers available. "};
printf("\nCan't have 7%d", max_modules);
printf(" modules.\n");
goto repeatl;

H
else {
for (i = (cur_modules +1)}; i <= max_modules; ++i) {
nodes = build();
add_module();

current_status();
snapshot ();
3}

partition()

/% This function takes care of the case where the nbr of modules in ¥/
/% the network is a multiple of three (3). When this happens, the ¥/
/% network is partitioned into three separate but equal subnets. When ¥/
/% the nbr of modules is equal to or greater than 12 and an integer ¥/

/¥ multiple of three, network performance is the same as a one 1/3 x/
/% that size. Partition is called by the alter function. X/
{

int ¢;

int j;

5

*

e v g

B = T %, G

- v

".—"4'“‘0‘9, .

b..b%-.ﬁ..?._.. <

i

> -

R
-
v

P A AR AT e A S et A A
A SRR e S

BTN IR R ST R

229

repeat_c: print f("\n\nThe number of modules ");
printf("you requested would leave the network");
printf("\npartitioned into three separate but equal ");
print f(" subnetworks of \n%d"“, max_modules/3);
printf(" modules each. Is that what you want?\t\t");
. ignore_c: c = getchar();
’ if (c == ND
J =1

else if (¢ == CR)
goto ignore_c;

§. ety Vi e

else if (¢ !'= YES) {
printf("\nThat was not a valid response'\n");
goto repeat_c;

"

3

- Ny

else {
print f("\nm\nIf you want 6 or 9 modules, then the resulting ");
printf("topology of 2 or \n3 modules each "}); ’
print f("per subnet is less than a fully connected mesh");

N ad A

-
'

a print f("\ntype topology. So ");

4 printf("that is not a valid request! If you want to ");

% print f("\nevaluate 12 or more modules whose number is an ");

) printf("integer multiple \nof 3, then performance cf that");

¥ print f(" partitioned network is the same");
printf("\nas a network with 1/3 the number ");

W printf("of wmodules you requested. For \nexample, a 12 ");

! print f("module network performs like the minimum 4 module");

% printf("\none, and is equal to 2 independent 4 module");

i printf(" networks. Enter a \nrequest for the more simple");

* printf(" network. VYour entry should be 1/3 \nof your");
printf(" earlier request.\n\n"});

i i=

) }

) return(j);

. ;

0

‘; add_module()

]

5 /% This module adds newly generated modules to the existing network */

¥ /% when the request is greater than the minimum four module topology. ¥/

- /% It is called by the alter function. */

\ «

]

b int temp;

A int tempi;

int temp2;
int temp3;
int i;

)
P)

- o

' ‘ , -y « A M I 0 a7 T N o O M W X W W A,
BCROCRACHA M R JCRIOAM M ICK XN MM Kb M P 0‘.»".-’0‘;"!.'%."J‘Mu OB T MO N '...u AR N "' Ny, AT

Tty o
L) (A

T N L N T T N L TN R T T R T X U I O O O O O R R O R T R T X FA TR T T O PP

230

/% The following code changes pointers & links at the top of the nwk. %/

templ = PTR_ARRAYI[O1[01;
PTR_ARRAY[O01L0]1 = PTR_ARRAYL11[01;
PTR_ARRAY[13L0] = PTR_ARRAY[21[03];
temp = start - 4;

PTR_ARRAYL21I01 = teng;

for (i = 0; i € 3; ++i)
temp2 =
temp3 =

PTR_ARRAYLi ILOJ;

PTR_ARRAYLiI[13;
POSITIONL[temp2IINXT_ND_POSN] = PTR_ARRAYLi1[1];
POSITIONCtemp2]ILINK_ND_COL] = POSITIONCtemp3101];
FOSITIONCtemp2]INXT_MDL_COL] = POSITIONLCtemp31L3];

POSITIONL temp3IINXT_ND_POSN] = PTR_ARRAY[i1[O0I;

POSITIONItemp2ICLINK_ND_COLI = FOSITIONCtemp23l11;

POSITIONCtempZIINXT_MDL_COL] = POSITION{temp21031;
3

++temp;

POSITIONLtemp1 ILNXT_ND_POSN] temp;
POSITIONCtemp1 JCLINK_ND_COLI = POSITIONCtemplL1];
POSITIONLtemplIINXT_MDL_COL1] POSITIONLtemplL3];

POSITIONCt emp1INXT_ND_POSNI
POSITIONCtemp1CLINK_ND_COL1
POSITIONCtemp1INXT_MDL_COL]

templ;
POSITIONLtemp11L1];
POSITIONLtempi1L3];

/% The next code changes the pointers and links on the bottom of nwk ¥/

templ = PTR_ARRAYL31[0];
PTR_ARRAYL31[01 = PTR_ARRAY[41L0];
PTR_ARRAYL[41L[01] PTR_ARRAYLSIL01;
++temp;

PTR_ARRAYL51L0] temp;

for (i = 3; i < 6; ++i)
temp2 = PTR_ARRAY[i1[01;
temp3 = PTR_ARRAYLil[11;

POSITIONCtemp2]CNXT_ND_PQSN1
POSITIONCtemp2]CLINK_ND_COL1
POSITIONCtemp2]CNXT_MDL_COL]

PTR_ARRAYLi 1011;
POSITIONLtemp31C11;
POSITIONCtemp31L3];

nnu

POSITIONL t emp31LNXT_ND_POSN]
POSITIONCtemp31CLINK_ND_COL1
POSITIONLtemp31CNXT_MDL_COL1]

}

PTR_ARRAYLi1[01;
POSITIONCtemp2][11;
POSITIONLtemp2]L3];

++temp;

D R - . . o LA N o . . w) ~ N
1R T 0 0 e T g g i et 0 0 s T R M A o et M s ittt i I i el

. T T T R O N o T S T T R S P U W S P P W U DU W W WO U VO WAL

e e -

\l
f 231 '
. \
POSITIONCtempl JEINXT_ND_POSN] = temp; '
POSITION[temp1 1[LINK_ND_CDL.] = POSITIONLtempl[1]; g
POSITIONCtemp . JINXT_MDL_COL] = POSITIONCtemplL31;
v
POSITIONCtempJENXT_ND_POSN] = templ; ;
POSITIONCtempICLINK_ND_COLI = POSITIONCtemplll1]; :
POSITIONL tempIINXT_MDL_COL1 = POSITIONLtemp11L3];
}
¢ :-
? set_pointers() ¢
« ¥
: /% This function initializes pointers used to expand the minimum four */ 7
/% module network. It is called by the main network control program. */ y
W { ()
: PTR_ARRAYLOI[0] = 4; "
j PTR_ARRAY[O1[11 = 1; '
N PTR_ARRAYC11[01 = B; \
" FTR_ARPRAYL11[1] = 5; - ¢
- PTR_ARRAYL2IL0] = 12;
t PTR_ARRAY[21[11 = 9; '
* PTR_ARRAYL31L0] = 6; t
o PTR_ARRAY[31[1] = 3; N
¢ PTR_ARRAY[41[0] = 10; .
" FTR_ARRAY[41[1] = 7; \
PTR_ARRAYILSI[O] = 14;
g PTR_ARRAYI[S1{1]1 = 11; !
" } ‘
J
d
i
& failure_setup ()
% /% This function sets up the network to simulate failed mdls and nds */ ?
4 /X for network analysis. It is called by the main network ctrl prgm. %/ 4
K q
B ¢) 0
! int c; ,
int fail;
¥ int 1 H ~
7 int j;]
2
¥ int MDL_FAILURELS01[13; -3
3 int ND_FAILUREC1001C1]; y
‘ repeatil: printf("\nDo you want complete modules to fail? ");
p ignorell: c = getchar O); N
k) W
4 if (c == YES) ¢ 3
'y
print f("\nEnter modules you want to fail, "); .
s printf("one module number per line.\n\n"); (
; ;
i K]
/| !

-
-

a
(4
~

' , - D . N 0 O e
e 'q.' ‘,l‘ q‘.'l',' ',.‘l‘a‘i'._.‘,,l., s, 0';:1’.,0';,."a’t".“";',"t, l‘.!l.;?l'g.l”,l.o..l'q,i’.,l'p,l.b?l‘.,"'.\ 0’!’1"‘;"’.‘0’,‘!‘.‘6‘. WY, .'0.“'0,‘ » b‘.‘l’. 0'-“', I’!‘l » .'p..'o..'l..'- WS he Ay

R TR R N R M NS X W

g e AR ¥ e

T s e xf

o mn . Oy . #D

L

Wt £ 2
PSRN AT

L]
|*.I\.

repeati2: printf("\nDid you enter the numbers correctly? "

R RN PO U AT U LA O AN AR S XA X PRV N YN N UYWAY

232

i=1;
scanf ("\n%d", &fail);
vhile (fail '= ENUF) {
MDL_FAILURELi1[OY = fail;
print f("\n\t%ed J&d ", i, MDL_FAILURELiI[OD);
++i;
scanf("\n%Zd", &faill;
}

[r
-

ignorel2: c = getchar ();

if (c == ND)
goto repeatil;

else if (¢ == CR)
goto ignorel2;

else if (c '= YES) { .
print f("\nThat was not a valid response!\n");
goto repeat12;
¥
J =1
while (j < 1) {
fail = MDL_FAILUREL j1[0];
if (fail ¢ 1 ! fail > cur_modules) {
printf("\n\nThere is no module in the");
printf(" current topolocgy numbered %4d'", fail)d;
print f("\n\nYour request is ignored");
printf(" since the smallest module in the");
print f("\n\nnetwork is one, and the largest");

printf(" is %4d.\n", cur_modules);
++j;

.

r

else <
mark_module(fail);
++j;
}
3

repeatid4: printf(“\nDo you also want nodes to fail? "y
ignorel4: c = getchar();

DO j
ahaalnainalgdig

if (c == YES)
goto nodes?2;
else if (c == CR)
goto ignhoreld;

else if (c '= ND {
printf("\nThat was not a valid response!\n");
goto repeatid;
)
3

% OO ™ W a M (A Mh ™ i g O S W ¥) /
.l Ak .:'...\.\' ML N I.u.l'o‘l.:.o.‘l‘ " .‘. X an 'h. l- ’.- Y ¢ 2) \ .' .".‘Ji

N AN
W THERE Y .l.--"o.l."o.'

I R T R N T T T R I R R R I R T R T o R S e R T U N I N I N M S YR O O™ " N :’,
ph
t
2
)
%
233 %
Wt
else if (c == CR) ﬁ
goto ignorell; .
}
else if (¢ != NO) { A
print f("\nThat was not a valid response!\n"); i
goto repeatil; i
H .::
else {
nodes2: print f("\nEnter nodes you want to fail, one™);)
print f(" node number per line.\n\n ™) 5
t= L iy
scanf ("\n%d", &fail); A
while (fail '= ENUF) £ N
ND_FAILURELiI[0] = fail;
printf("\n\t%ed 7&d *, i, ND_FAILURELiI[OD); X
. b,
; scanf ("\n%d", &fail)i $
r {
5
repeat13: printf("\nDid you enter the numbers correctly? "y)
: ignhorel3: ¢ = getchar(); v
! At
if c == ND ‘
goto repeati14; '
L]
else if (c == CR))
: goto ignorel3; W
else if (c '= YES) < i
printf("\nThat was not a valid response!\n"}; |
goto repeat13;)
2)
for (j =13 j < i; ++j) { §
fail = ND_FAILURECL j1[0]; j§
if (fail > nodes) { N
printf("\n\nThere is no node in the current”); :
printf(" topology numbered %4d'", fail);)
printf("\n\nYour request is ignored since the "); o
printf("largest node in the network is %Z4d'", nodes!;
} N
else 5
mark_node (fail); It
H)
) A
3 X
N
L]
' "
’ mar k_modul e (x) N
]
/% This function sets 1’s in the appropriate columns of the network X/ N
/% connectivity matrix to show that the desired module has failed. It ¥/ Y
»

RTINS AT IO WY N UA o T T T R M R W N R T T T Y R T P WU RV R U RN T RUR
13

‘ i
i Y
* ¢
-

} 1
0] 234 }
:‘ /¥ also calls set_links to update the contained nodes in the module. ¥/)
' /¥ It is called by the failure_setup function. */

Y : (
¢ int x; .
i !
Z‘ ¢ 0
; int i]
. int j; X
" i = 0; 3
0 vhile (i < start) { D
1 if (POSITIONLiIL3] == x) { '
i POSITIONCiIL2] = §; by

POSITIONLiIL4] = 1; A

' b

. if (POSITIONCi3C14] == x) N
r POSITIONLiIL15] = 1; \
e" ++i; W
) "
s,]‘
& l‘
N ;T - [
~ J =0

K while (j < start) { 4
. if (POSITIONLjIC2] == 1) :
h set_link(j); "
! ++ 3 .
3 Ji . N
oy r b,
iy } 4
i :
) mark_node (y) ¢
: /% This function sets 1's in the appropriate columns of the network %/

: /¥ connectivity matrix to show that the desired nodes have failed. It %/

P /% is called by the failure_setup function. Y/ by
I \
K int y; a3
' {

p int i;)
: for (i = 0; i { start; ++i) :
K if (POSITIONLilf1) == POSITIONCyI(1D) { A
R POSITIONCi IL2] = 1; W
\ set_link(i); e
D b

’ *

3

: .
) set_link(kill) ~J
‘ -
f /% This funct’n sets the appropriate links in the next module section %/ ;
: /% to reflect that the desired nodes have failed. This information is ¥/

: /% needed for routing. It’s called by mark_module and mark_node. */

~. int kill; Iy
i l_
[\J
' o
‘ \J
3 .‘

¢
T A A A A A A e Y T PR P SR PR PCTOIY,
A R N N VR TN O, RN e e e

MIANEKRLCAR AN KNN

PRI TSR

int k;

X for (k = 0; k < start; ++k) { i
' if (POSITIONCKICS] == POSITIONLKill1(11) :
- POSITIONLKILE] = 1; ’
s if (POSITIONCKIC8] == POSITIONCKill11C11)
K POSITIONCKIL9] = 1;

if (POSITIONLKIC11] == POSITIONCKillIC11)
o FOSITIONCKIL121 = 1;
o if (POSITIONLKIL16) == POSITIONLKil1I[1D)
i POSITIONLK1C17] = 1;

?

2t
- -)

print_matrix()

\ /%X This function prints the network connectivity matrix which defines %/
Ky /¥ the complete network topology. Called by current_status function. ¥/

r
RS

int 1;
int J;

print f("\n\n\n\n\n\n\n\n\n\n\n\t
" print f ("NETWORK CONNECTIVITY "); ;
o print f(* MATRIX\n\n\n\n\n\n");

W print f("\n\n POS'N HOME HOME ");

o print f("DESTINATION NODE"); 1
o printf(® NEXT MODULE™);

printf("\n # NODE MD*L ");

K print f (" (LOCAL) ");]
4 printf(™\n\n #8 ST # ST # STPOS'N & ST ™; '
3' print f("PDS’N # ST POS'N # ST NODE ST POS’NAn\n"); '
¥ printf(* (0"); b
) for (1 = 1; 1 < MAX_COLUMNS; ++i) »

printf("75d", i);
%] printf(* >"); 2
s print f("\n\n\n");)
- for (i = 0; i < nodes; ++i) < N
’n printf("\n\n"); '
- print f("%4d", i);
) for (j = 13 j < MAX_COLUMNS; ++j)
; if (j==11!!j==51!j==811G==111! j==16 Y
& printf("%S0", POSITIONCiICj1); :
» else
0 printf("%5d", POSITIONLilLj1); .

}

printf("\n");

."l\.'f.‘_ \‘J'\J‘c' - .‘J‘~’f\\ \.;\- 'UQJ'&J‘ f'-'-f

‘. ,‘r\ v o vl‘d\(f _rr.‘ lf‘-f'
‘*"7 -"‘l.') n“;“i S0 a‘ Jln‘l‘n W c '\ \ N \) ." l" e "(‘ ‘.

P DL IR R IO R TR R T T TN T R TG R AR AR A AN AR R AE AR I AR WOV AP U PP VUYL PU PUVU U FL Y. PUTO YU RO R Y T

& 236
r
) }
e
:;; save ()
3
g /% This function saves current global parameterc prior to exit. It iz ¥/
_S /% called by the main network control program. X/
{
.g int i;
l% int j;
x'(. (
2 outfile = fopen("network.save", "w"); i
¢ fprintf(outfile, "%d\n", nodes); ‘
fprintfloutfile, "Zd\n", max_modules);
w3 fprintf(outfile, "4d\n", max_numbers);
% fprintf(outfile, "Z%Zd\n", cur_modules);
i fprintfCoutfile, "Zd\n", start); A
ZQ‘ fprintf(outfile, "\n\n\n\t\t ")y X
o fprintf(outfile, "CONNECTIVITY MATRIX\n\n");
. fprintfloutfile, " 0");
2? for (i = 1; 1 { MAX_COLUMNS; ++i)
A fprintf(outfile, "%5d", i);
o fprintfloutfile, "\n\n™); i
* for (i = 0; i < nodes; ++i) {]
< fprintfloutfile, "\n\n"); 4
. fprintf(outfile, "%4d", i);
a,f for (j = 1; j < MAX_COLUMNS; ++j) g
% if (j == oj == g == 1t j=E= 11l == 18D]
;{ fprintfloutfile, "%4So", POSITIONLilLj1);
& else
W fprintf(outfile, "%5d", POSITIONLCiILj1); .
?
ﬁ for (i = nodes; i < max_numbers; ++i) { \
N fprintfloutfile, "\n\n"); X
$ fprintf(outfile, “%4d %So", i, POSITIONLiIC1]); ‘
)
4 ’
+ fprintfloutfile, "\n\n\n\t\t\t\t™);
K fprintf(outfile, “PTR_ARRAY");)
P for (i = 0; i < 65 ++i) { :
3‘ fprintf(outfile, “\n\n"); -
B n for (j =0; j £ 25 ++))
P fprintf(outfile, "%45d", PTR_ARRAYLil[j1);
H
:' fclose(outfile); :
i } ,'
d
S \
h restore()
~5 /¥ This function restores current parameters at the beginning of ¥/
3 /¥ simulation run. This way global parameters can be preserved from ¥/
"
N
K ;
h

v A A WA Y N AR ALELNE TR I
'”Q".A.‘el",c"‘.l'.,“‘.."."'.0 .O‘.t‘ "‘.!“e"‘.. w8 .0“.’ ‘:‘._..Cho‘ I“. ‘.ﬂ’.n‘, x‘.‘q.. l.!‘l..‘..; STy ‘&‘&‘.Q A {3 O 15 ..0 . .‘hﬂ' 0’! .l 'l Sq L0 \Y ' " .-‘

AL RSN SO AL S P PRI IR ETCRNN RNt o 1305 < g8 gl g dak o akliel 2k 8 N T I T RO N O N R R A N U U OV DN

237
/% one run until the next. It’s called by the main network ctrl prgm. %/

{
int ij;
int j;
int skip1[201;
int skip20201;

infile = fopen("network.save", "r");
fscanf(infile, "%Zd\n", &nodes);
facanflinfile, "Zd\n", &max_modules);
fscanf(infile, "Zd\n", &max_numbers);
foscanflinfile, "%d\n", &cur_modules);
fscanf(infile, "%Zd\n", &start);
fscanflinfile, "Z¥s Zks\n", skipl, skip2);

for (i = 0; i ¢ MAX_COLUMNS; ++i)
fscanf(infile, "Z¥53d", %j);

for (i = 0; i < nodes; ++i)
for (j = 0; j < MAX_COLUMNS; ++j)

if (j==111j== MM j=811 j==11 1! j == 16)
fscanf(infile, "%30", YPOSITIONLilLj1);

else
fscanflinfile, "%Zd", &POSITIONLilCjd);

T e

»,

for (i = nodes; i < max_numbers; ++i) {

fscanf(infile, "%4d", &PDSITIONLi1LO01);
fscanf(infile, "%S50", &POSITIONLII[1D);

3

fscanf(infile, "Z%Z¥s\n", skipl);
for (i = 0; i < B ++i)
for (j = 0; j < 2; ++))
fscanflinfile, "%ZSd", WPTE_ARRAYLilLj1);

fclose(infile);

clear_failures()

/% This function restores failed nodes and modules to the current
/% network topology. It is called by the main network control prgm.

{
int J;

for (j = 0; j < start; ++J)
POSITIONL j1[21]
POSITIONL jI[41]
POSITIONC jIIG]

N I A AR O A A v N Ve
Y » »¥ 3)

N LA

o
Mhﬂu"H“|%~-‘nHﬁ«“9M..uln AR T

N3l st 0 ¥ a B a V2t at Rt Fat Bt 02° 02% Fa¥ $2% £2* @a% Hab fab Pab Ral

POSITIONL j1[9]1 = O; ¢

POSITIONL jIC121 = O D
POSITIONL j1[1S1 = O
POSITIONLjIL17] = 0O

shapshot ()

a file the current network topology of the */
request. Called by main network ctl prgm. %/

/% This function saves in
5 /% simulation module upon

{
int i;)
int j; . W
int c; :

print f("\nDo you want a snapshot ");
printf("of the current topology?

repeat15:

ll);

ighorelb: ¢ = getchar);

i :
3! if (c == YES) { g
:, shapout = fopen("network.snap", "a"); ’
! fprint f(snapout, "\n\n\n\n\n\m\n"); Q

fprint f(snapout, "\n\nThe current number of "); ,
fprint f (snapout, "modules is %4d.", cur_modules);

y fprint f(snapout, "\n\nThe number of nodes is 7Z4d.", nodes);
. fprint f (snapout, "\n\n\nin\n\t\t\t\t\t™);

3 fprint f (snapout, "CONNECTIVITY MATRIX");

: fprint f (snapout, "\n\n");

L ICT

-_ - -

-

)
-

g fprint f(snapout, "POS'N HOME HOME") ;

fprint f(shapout, " DESTINATION NODE™); -
5 fprintf(snapout, "\t\t\tNEXT MODULE"); X
' fprint f(snapout, "\n # NODE "); N
K. fprint f(snapout, "MD'L (LOCAL> "J; :
i fprint f(snapout, "\n\n # ST & ST # ST"); 3
X fprintf(snapout, " POS'N # ST POS’N # ST POS'N"); '

fprintf(snapout, " # ST NODE ST POS’N\n\n");
fprint f(snapout, " (0");
for (i = 1; i < MAX_COLUMNS; ++i)

fprint f (snapout, "%Sd", i);

fprint f(snapout, " Y");

fprint f (snapout, "\n\n\n");

= ar -

ETL

A e -

for (i = 0; i < nodes; ++i) { .
% fprintf(snapout, "\n\n"); N
3 fprint f(snapout, "%4d", i); X
) for (j = 1; j < MAX_COLUMNS; ++j)
, N
i

if (j == =51l j=811 j=11 1! j == 16)
fprint f(snapout, “%5o", POSITIONLiILj1);

K else M

fprint f(snapout, "%Z5d", POSITIONIil[j1);

A P P LI LU S T L TR
i ot .-‘C.ﬂ.na‘. A-. MO "'\' T

‘w

4 . . PR . , -
)) p Ly S i by,
”a‘!hh'o‘. RIS e e u.JO.: ol Aoy X

R
Y o P AR G T i G v VA T
Kt ut X B

& A ad Sl)

A R AR LM R L T Y TS VT VR U RN AN R AR IR AR T WU WU YU N M NUN AN MRAARREA KN ARNN 0.8 el Sa0 %0 “ak a8 200 4V RY Va4, Y aY

0 ¢

]

(i
. K
; 239 i
v W
3 y
] } 4
s d
13

fclose (snapout);

Y } 4
: else if (c == CR) Y
3 goto ignorelS; :
¢ else if (c !'= NO) ¢ :
printf("\nThat was not a valid response'\n"};
N goto repeat15; .
. } b
|) ;
B .
simulate()
B]
i: /% This function is the major control program for traffic simulation ¥/ %
ﬁ /¥ on the network established in the first part of this program. ¥/ ;
) { 't
| int temp; : 4
K printf("\nWhat speed would you like to assign to the links? "); 4
3 scanf("%d”, &RATE); o
} printf("\nWhat is the mean message size (in charactercs)? "y g
A scanf (“id", &mean_size); i
) printf("\nWhat is the mean message interarrvrival "); vﬁ
printf("time (in msecs)? ");
5 scanf("id", &IAT); .
5, print f ("\nHow many messages should be delivered "); N
! printf("before gathering statistics? "); P,
) scanf("Zd", &STABILIZE); s
: repeat&: printf("\nHow many messages should be used "); O
printf("for gathering statistics? B H
S scanf ("%Zd", &max_msgs); ?
U
E if (max_msgs == 0) { ‘:
N print f("\nThat is not a valid request!\n"); \
! goto repeatg; by
3

0
\ initialize(); "
: again: min_FELQ); b,
Yy time_advance(); '
; adjust_time(min_time); B!
T if (imevent == 1) {
{ arrival (miti_rowl;
K if (stop_it == 1)
" goto quit; \
: H
\ else { by
) departure(min_row);
K if (stop_it == 1)
‘4 goto quit;
"4
L

r
i

-
-

¥ - T N LIS Y]

P ¥ e S P " t“ i - M T 'I’.f " - P W
*'n"’s’i'.of ..t'.!m AN A S AN L S OO AL SONESE AR R N AN AN A L A K LR R R ?‘

SV B TS afh o8 aTh e aFe T A ata a0d atatnts atE ot 26 o9 Ve Rt ate 2 AT 2% w s atE A" 2’ A’A R RVE . 8"8 6 a'A ¥ 2R ati a'h 2 a2 a%0 2'h.2%h.2%0.8%A]

240

h
J
3 } ‘.
4 ;
more_events();
§ temp = no_done - STABRILIZE; .
if (temp ¢ max_msgs) [t
§ gotc againg b
N else { h
clk_last_msg = CLOCK; :
printf("\n\nTotal messages generated was Zd.\n\n", msg_no);
K address_cnt (); /¥ write to file dest’n address count ¥/ t
N graphs(); /¥ write to file for final graphs : 94 :
! quit: if (stop_it == O !
* reports(); W
4 } it
b
A Q
" :
o initialize() 4
N "
’ /% This function initializes the work areas for the beginning of the ¥/ "
: /¥ simulation and schedules the first arrival at each server in the ¥/
ﬁ, /% network. It is called by the simulate function. ¥/ E
i { 3
§ int 1; /% used to set svo numbers 74 .
¥ int i; /¥ used to access rows ¥/ Ny
int j; /¥ used to access columns X/
; int k; /¥ used to access individual rows ¥/ ‘é
)1 '
] CLOCK = 0; v
-: msg_no = 0; $
i min_time = INFINITY; !
location = -1;
B no_done = 0; %
3 no_killed = 0; A
3 diri= 0; /¥ set up matrix needed to find the DF ¥/
8 total _hops = 0; !
; resp_time = 0;
max_path = 0;
. stop_it = 0; Ny
N ave_q_length = 0; I
R for (i =0; i < LARGEST; ++i) ¢]
! j=0;
while (j < 40) {
N if (j==0 9
! MSG_AREALi 1Cj1 = i; Y
: else if (j == 12)
4 MSG_AREALIICjI = 12; /¥ rt trace is empty ¥/
f else if (j == V== 10 11 j == 11 ~
MSG_AREALi1[jl1 = O;
; else N
i‘ MSGC_AREALi 1L j1 = 999; /% used to end trace X/ '
t (]
L] ¢
: ‘
L)
1y s

- -

Py

» B 5% %t G A I A T Wy Y PN o W ; M
B A SRR R A IR S 220 L0 1 L YA 2o TR Lo A AR G TP 4 S NN S

R R TR O N X T R R RN AR TR R I LW O P O o DRI DU DTS

i = 0;

while (i ¢ (nodes % 4)) {
1 =1;
for (k =15 k < (i + 4); ++k) {
J=0; .
vhile (j < 60) {)
R if (j==0) /% set row number */ v
e NODE_APEALKIL 1 = k; .
N else if (j == 1) /% set node number ¥/
' NODE_AREACLKILj1 = (i/4); '
g else if (j == 2) { /% set svri X/]
NODE_AREALKILj1 = 1;
++1;

else if (j ==) /¥ show server empty ¥/

PR

NODE_AREALKILj1 = INFINITY;
else if (j == 7 /¥ show queue enpty ¥/
NODE_AREALKIL j1

NODE_AREALKIL j1

}

; for (i = 1; i {= cur_modules; ++i) { 3
¢ i o= 4
Jd = 0; >
vhile (j <) { .
o if (j == 0 !
¥ s . .
g: GFELLil[j) = i; t
% else '
$. GFELLil[jl1 = O {
; ++j; iy

3

3

K for (i = 0; i < LARGEST; ++i) /% set to "0" STATS matrix ¥/ :
) for (j =0; j <S5 ++j)

3 if (j==0

- STATSLil[j] = i; /% save node_area row # . 94 o
9 else -
! STATSCi 1C j1

/% The following code initializes the destination address count. %/

for (i = 0; i < nodes; ++i) {
FREQLIIL[O] = i;
FREQLiI[1] = O;

o

ey

x
- N

- -
-

-

-
-

-

*
DRI] + g » r oy m g -
’I'.,\‘VQH’-.I‘?'C' 'l'?’l'a'l'a‘0’."':'&'-‘!‘&’!'0“'-l‘-“'v‘l'-“’n 10, 0 %00, %0 0T Y 0’“0“'0‘!’1.“&.‘0!"!“ 0,"0,’ ,.‘ .’. ..’ N _l('!l- (N P Yo .’<“A ‘h 'l« al % ‘hl,

SRRSO APCIR IS WS U REUEN B PR RIOTUR O AP WU MWL R NPT S P € AR KRR TR ATURR AN RO URION O T N T RO TR T Y TR R

242
}

/% The next code schedules the first wsg for each server of each nd. %/

. . .
5 i=0; i
K while (i < (nodes % 4)) {)
s k = i/4; /¥ used to access rows of POSITION %/
» if (POSITIONCKILZ2] == OO /¥ has this node failed? %/

NODE_AREALi1[4] = next_msg(); /% get first arrival ¥/
u else {
& for (j =15 j < i + 4; ++j)
I NODE_AREAL j1[41 = INFINITY; '
Ny ’
'Q i=3j-1; /% skip past failed nodec ¥/ d

}
" ++i;
i':; H
L } i
o t
ay ?
J time_advance ())
u:‘ . i
x /% This function advances the clock to the beginning of the next */
Q /% event and sets imevent for arrival or departure. Sets min_time and #/
g /¥ min_row. It is called by the simulate functioen. */
¥)
{

g int i; '
"
;f min_time = INFINITY; (
?' for (i = 1; i {= cur_modules; ++i) y
W if (GFELLiIL1] <= min_time) {

min_time = GFELLiI[11;
K min_row = GFEL[iJ(2];
&
* }
kj if (NODE_AREALmin_rowl(4] == min_time)
kX imevent = 1;
ﬁ» else

imevent = 2;
X CLOCK = CLOCK + min_time; Y
B \ ;
[#) 4 :
L)) y
x, J
ad just _time (time)

14 €
g /% This function adjusts downward the times of all other activities. ¥/ 3
;: /% It is called by the simulate function. X/ s
& v
A int time; /% contains min_time value ¥/
u: { :
K int k; "
!‘ '!
N v
'9. U
3
»
0]
D N P e T L e T R T R ST A Y

R R AR AT

int j;
int temp;

for (k = 0; k < (nodes ¥ 4); ++k)
J = k/4;

/% Adjust times of active nds only, do not bother svrs of failed nds. ¥/

if (NODE_AREACKIL4] > O &% POSITIONCjIL2] == O0) {
temp = (NODE_AREALKIL4] - time);
NODE_AREALKIC4]1 = temp;

if (NODE_AREALKICS] > O &% POSITIONL jIC2]
temp = (NODE_AREALKILST - timel;
NODE_AREALKILS] = temp;

for (k = 0; k < nodes % 4; ++k)
if ((ho_done >= STABILIZE) %% (NODE_AREALL1I[3]1 == 1))
STATSLk1[2] = STATSCkIL2] + time; /¥ update svr busy tm 3/

arrival (m)

/%t This function handles newly generated messages as they arrvive at a ¥/
/¥ nd. It calls a function to set initial parameters in the msg_area ¥/
/¥ matrix. This function is not called for transient messages since */
/% they already have key parameters set. Transient and new arrivals ¥/
/% are both processed after arrival at a node by the gqueue function. ¥/
/¥ Arrival is called by the simulate function. ¥/

o

¥
y
+

-

& L,

int m; /% points to min_row in node_area array ¥/

{
int place; /% rename of location for this func ¥/

place = set_params(m);
if (stop_it == O {
NODE_AREACm1L4] = next_msg(); /¥ generate next arrival
source_q(m, place); /% ensure wmsg starts at right svr
)

destn_node(x,1)

/% This function terminates a message at its final dest'n node upon
/% arrival. It is called by the stage_it function.

int x; /% contains the destination node number

\
W
\

Y GG 4 VAP LA T) A L o O PO YN R O O P . - a et LT %d 3
\ y " X
LA NGBV S e e, { W Ve Wttty Jo WAL » TR A AT W N N,

l"'4 \)
Vhy

R R R A T I T I T T I T R T XN R T e R A R I R N RN KK

.'
'Q
'6
)
244 3
1
int 1; /% points to the msg posn in msg_area */ Q
¢ ,
‘.
i ‘!
int i :
int tenp; Qq
b \
4 \
temp = MSG_AREAL11[127; /% update route trace ¥/ ¢
++tenp; '
; MSG_AREALI1ltempl = x; ¢
s MSG_AREAL11[12] = temp; ':
s‘ ‘{
“’ /% printf("\n\nNode %d has compieted delivery", MEG_AREAL11[131); ¥/ 2
/% printf(® to destination node %d.", x); X/ d
t MSG_AREAL11[9] = CLOCK; 3
: ++ho_done; X
¥ if ((no_done > STABILIZE) &% (no_done 4= max_msgs + STABILIZE)) ﬁ
: /¥ has network gone past startup %/ d
: save_stats(l); b
32 else { \
?: MSG_AREAL11L1] = O3 /% show row is now available ¥/ E
K for (i = 2; i £ 40; ++i) &
N if (i =12 $
) MSG_AREAL1I[i1 = 12; /% reset trace pointer ¥/
else if (1 == 10 (] i == 11) .
y MSG_AREAL11Li] = 0; X
g else &
3 MSG_AREAL!1[i] = 999; /¥ clear for reuse ¥/ b
‘ :) ;
Q;i
s t.t
¢ more_events() a
! by
! /% This function checks the future events list for each nd to see if %/
/% other events are scheduled to occur simultaneoucly with the ¥/
- /% imminent event. It is called by the simulate function. */ -
" Kt
: ¢ 3
N int 1; !
|]
A for (1 = 0; 1 < (nodes X 4); ++1) 9
: if C((NODE_AREAL11[4] == 0) &% (1 '= min_row)) -
4 arrival(l); by
) for (1 =05 1 £ (nodes % 4); ++1) o
y if ((NODE_AREAIL11[S] == 0) &% (1 '= min_row)) 9
. departure(l); ‘
‘)
4 .
]
L]
: i
W
)

WO,

0 N WL, 0 ;W 3 W™y o % MO I o ", e iy
“.’4‘.\“..'%‘!'1“.5 !?A_.'l‘. WA ..'l‘:\‘-' ORI A KR ~ 2y A \" .o, ,.'0. 1’ "-L Wl Q"'.t'!.- W X W3 WA

ol

.ol,.. \ a -‘o':h!!‘

min_FEL()

/% This function computes the new imminent event at each nd % places
/¥ the min time from each module in the global future events list.
/% it is called by the simulate functions.

{
int i
int
int
int
int temp2;

for (i = 0; i < (nodes ¥ 4); ++i) {
NODE_AREATi1LE] = NODE_AREALiI[47;
if (NODE_AREALiI[SI < NODE_AREALiJLEI1)
NODE_AREA [il[&] = NODE_AREALi1[S];

4

/¥ This code updates the global future events lists. It findes the x/
/% minimum FEL value of the 16 servers in each module, & places that */
/% value in the global FEL. ¥/

=1
i =0
i

le (i < (nodes ¥ 4)) {
templ = INFINITY;
for (j =i j< (i + 16); ++j)
if (NODE_AREALJILE] £ templ)
templ = NODE_AREAL j1L[E1;
temp2 = j;

GFELLKI{1] = teupl;
GFELLKIL2] = temp2;
1= Jj;

++k;

departure(m)

/% This function simulates the departure of a message from the server ¥/
/% (link). Upon departure, it sets the message up at the receiving %/
/% end for further processing, gives the next waiting message the svr %/
/% if one is waiting, or sets the svr to idle if no wmsgs are gqueued ¥/
/% for the server. It is called by the simulate function. */

5 Bl R TSt e 0. Bl

-

x_A_B_e.

int m; /% points to min_row in node_area array ¥/

{
int i;

. N - - mn . = OO - LA L LA L L
‘x".'\".'\':’l’u‘"u'bn'. O R DTN U TN T A M AN RO, K T X ':..I%. Mt ‘:‘"’.A...‘l.- A O e R RS MR S X M KON o W0 Y

R IR I R I O U T L U T T s L0 g0 ofl gtk 2ty ath a¥8 U8 4 0 00 aIATE 2% 203 s VA pVA VR a R a A o A oM 2% a%A a2 2R 2% 2"8 2% a8 582"’

(™™ 2=

. 246 o

' int j; ‘
K int temptl;

int templ;

int length;

: 1 = mj

d stage_it (i, NODE_AREALi1[81); /¥ set up msg at recvr */ t

- if (NODE_AREALiJ[7]) == 8) { /% is the queue empty ¥/ ;
NODC_AREALiIiIL31 = 0; /¥ set svr to idle ¥/

4 NODE_AREALi 1[5 = INFINITY; /% show no departures : ¥4

A H

)]

* /% This part of the function gives the next msg in the queue the svr, %/ /

i /% sets it’s departure time on the server’s FEL, and updates the q. ¥/ X

i else { i

% temp2 = NODE_AREALi1[9]; /% get next meg from queue ¥/ ;

K for (j = 9; j € 99; ++j) ¢

NODE_AREALi 10 j1 = NODE_AREALiI[j + 13;
templ = NODE_AREALi1[71;

o -— templ;
y NODE_AREALi1[71 = templ; i
ol length = MSG_AREACtemp21[31; \J
§ NODE_AREALiJ(5]1 = SERVICE_TIME; }
{‘ NODE_AREALi J[E] = temp2; :
* 2 t
}
s \3
i link_node(i, Jj) "
'
) /% This function finds the next link node in the path of a message as ¥/
/¥ it is routed to it’s destination. This link node may be within the ¥/
: /% same module or contained in the "link module” for the node. It is ¥/ p
' /% called by the stage_it and source_gq functions. ¥/ A
L
f int i; /% pcints to node just arrived at ¥/ h
4 int j; /¥ points to msg posn in msg_area ¥/
. { ~
‘ .
: int SF; /% the spiral flag ¥/ s
e int DF; /¥ the direction flag X/ o
g int gone; /% a flag when a mdl is cut-off */ O
B int temp; '
int templ;
i int temp2; 2
) int temp3; ;
; int temp4; /% contains module nmbr of cur node ¥/ >
B int flip; /¥ use to return to again as needed ¥/ .
X int serveri; /¥ points to link node at svr #1 X/ 3
int server2; /¥ points to link node at svr #2 ¥/
int server3; /% points to link node al svr #3 ¥/ 3
int serverd; /¥ points to link node at svr #4 */

. &
8

s
3

A ' A ‘.!"’ '!2“‘.0'0 o ‘0 % ..-'.fo‘.f

N N L O T T U TN T N U TR R TR R A TR G A A R R R R O AT T Y T N M L T N Y R Y T RO U W VO WO oY

t
247 J
‘
temp = i; /¥ set to node just arrived at ¥/ :
temp4 = POSITIONLtempl[3]; /% get current module number h A
Y again: SF = MSG_AREAL j1[41; A
: SF = SF % 25 /% shift one bit left ¥/
DF = MSG_AREAL j1[S]; X
temp2 = SF + DF; /% logical "or" function */ v
flip = 0; !
» gone = 0;
5 ¢
E /% The following test finds and queues at the link node. ¥/ 3
4 ¢
i temp3 = POSITIONItempl(S]; 5
A templ = temp2 & 03; -
serverl = templ;
R y
N tenps = POSITIONLtemplC83; !
;t templ = templ & 03; :
Y server2 = templ; :
3 temp3 = POSITION[templ[11];
%ﬁ temp! = temp3 & 03; .
5 serverd = templ; .
)
4 if (serverl == temp2) /% svrl link node % b
X, if (POSITIONCtempli&l == O) '
queue(temp X 4, j); /% gqueue at server %! ¥/ "
W)
ﬁ else if (MSG_AREA[jI[E] == POSITION[templL7]} /¥ destn dead %/ ;
f kill_it(POSITIONLtewplL7], temp, j); /% can't make it'!' ¥/ <
[]
s; 3.
' e¢lse { {
gone = flip_it(temp, tempd, j);
! if (gone == Q) ,
) flip = 1; 3
»: } .
0 t
X else if (server2 == temp2)
4 if (POSITION[templ[9] == Q) :
a queue(temp ¥ 4 + 1, j); /¥ queue at server #2 ¥/ .
W
N else if (MSG_AREA[j1[6]1 == POSITION[temp][101) /¥ dest dead ¥/
X kill _it(POSITIONLtemplL101, temp, j7;
N
, else { 1
" gone = flip_it(temp, tempd, jJ); 3.
i if (gone == 0)]
K flip = 1; "
N 3 i
0 \
y else if (server3 == temp2)
o if (POSITIONCtempl(121 == 0)
o queue(temp ¥ 4 + 2, j); /% queue at server #3 ¥/ z
B 't
L q
;]
N .
P T o S A R T R N R AN 2 St e D o e 0

% A W, S T st Bt aih Al g Y WA AR LR AYANERN AN AN AR N LY N Y N U U RN AR RN W U VW VAR Pat Y Vg gt Gt

' ¢

v J

K 248 ;

¢ g

A %

¢ else if (MSG_AREALJILE] == POSITIONCtemp3[131) /% dest dead */ X

2 kill_it(POSITION(templ[13]1, temp, j);

; else ¢ 3

iy ohe = flip_it(temp, tempd4, j); Y,

*, 9 J '

{ if (gone == 0) Y

) flip = 1; f

3 3

ﬁ else /¥ the case when svrd = tempZ ¥/]

N)

N if (POSITION[templLi71 == 0) "

r. queue(temp ¥ 4 + 3, j); /% queue at server #4 ¥/ {

else if (MSG_AREAL j1[&] == POSITIONCtempl[181) /% dest dead ¥/ ‘

: kill _it(POSITION[templL181, temp, j); ?

i ¥

: else { \

N gohe = flip_it(temp, tempd4, j3; v

f if (gone == Q)

- flip = i;

‘; ; M |

4

\

i if (flip == D 2

" goto again; /¥ return to find alternate link node ¥/ N

H

K

K)

b

o

b flip_it{(cur_node, action_mdl, 1)

K

g /% This function changes spiral and direction flags to route messages ¥/ &

_ /% around failed nodes and modules. Called by link_node function. ¥/ s

3 %

f int cur_node; /¥ contains node just arrived at */ &

» int action_mdl; /% contains module number of failed node ¥/ 3

! int 1; /% points to row in msg_area matrix ¥/ Y

{

2)

s int gone; /¥ used to signal that a mdl is unreachahle ¥/ .

} int temp; a

X int source_mdl; H

4 i

< gone = 0; .

p if (MSG_AREAL11[13] == 999) :

“ if Caction_mdl == MSG_AREAL11[10D) /% both spirals cutoff ¥/ :

z source_mdl = (cur_node 7/ 4) + 1; .

“ else

source_mdl = (MSG_AREAL11[13]1 / 4) + 1; /% get source mdl # %/

. if (action_mdl == MSG_AREAC11[101) /% changed SF/DF once this ¥/ A

' /% wdl which means both spirals are cut %/ 5

) 3
{J

'.
‘l

O O A A NI P s T S AT R B g R St R e R R URC IO RO L P O I N WU e AN
D e T N P R T e Ty ot A o T T e s e, T A T AT e T T T e I P I P O D O

ke,

'vr",iut';ﬁ’\“0‘-‘4‘l'!“"‘i“:"i""l‘""*"I‘V‘t‘!‘t'l“\'|~.I".i“l'.l‘l'.|“\ V8% 0070 0" 0 TR 0 pat B g0 8 0 g 7y 0.0 a0 g ¢
¢

PN G ALY

PO Fea N B |

ey

-

- .

- ae & o

."\V,\.!_ ..'_“.'.“'!.‘l.,‘ﬂ. g ,{'n'.«

249

if (MSG_AREALII[11] == 0) { /¥ @ means SF but not DF %/
/¥ yet, so chg direct’n retracing previous path ¥/

MSG_AREAC11[11] = MSG_AREATII[11] + 1;
temp = MSG_AREA[11L5]; /¥ chg direction flag ¥/
if (temp == 0)

MSG_AREAL11[5]
elce

MEG_AREAL1I[S] = 0;

temp = MSG_ARCAL11r4]; /¥ reset SF to retrace path ¥/

if (temp == O

t;

MSG_AREAL11[4] = 1;
else
MSG_AREALIIL47 = O;
3
else if (MSE_AREAL11[11]1 == 1) { /% if 1, already tried ¥/

/¥ direction chg onh one spiral, so try same direct'n ¥/
/% on the other spiral ¥/

MSG_AREAL11(11] = MSG_AREAL11IC111 + 1;
temp = MSG_AREAL11[41; /¥ chg spiral flag %/
if (tewmp == O
MSG_AREAL11[41
else
MSG_AREAL11[41]

1;

0;

else
gone = unreachablelcur_node, source_mdl, 1);

/% In the above case, spiral changes have occured and both divectiors ¥/
/% have been attempted on both spirals. Can’t get to destination. Y/

else { /¥ one spiral ice out, chg S to the other ¥/
MSG_AREAL11L10]1 = action_mdl;
temp = MSG_AREAL11[41;
if (temp == 0)
MSG_AREAL11[41]

13
else
MS5G_AREAL11[4] = 0;

1

return(gone);

queue(i, Jj)

/% This function assigns the server if idle, or queues the message if ¥/
/% the server is busy upon arrival of the message. It’s called by L 74

e B P X B v e VT BV ST N e N B 0 | . 3% 1 PFa i) D NN s AR WA
..- - a.a .ol.u‘- 2 RO -.Q"b -'-—.o Ann -i!.ss -c ' 3 o "‘ “, <

ol B Py .‘lt

SRR R PO

o o

T I T T T T T R T T T U N U o W T R W R T R T S T S P W W o S W U U WU WU WU W U WU WU WU W WO R R oo ey

e

h
" 0
i 250]
t

/X the stage_it,link_node, and source_q functions. ¥/ M

int i; /% points to row of next activity 7/ '

int j; /% points to msg place in msg_area arvay ¥/ f

§ l‘a
: 1 h
K int tewp;)
int length; W3

i

: temp = MSG_AREAL j1[121; /¥ update route trace ¥/ ﬂ
A ++temp; "
; MSG_AREAL jILtemp] = NODE_AREALi1[11; be
3 MSG_AREALjI[12] = temp; N
: %

if (NODE_AREALil[3] == 0) { /¥ Is the server avail ¥/

) NODE_AREALi1L3) = 1; %
: NODE_AREALi1[81 = j; /% set link tc msg_area %/ 4
4 length = MSG_AREALjI1[31; '
! NODE_AREACLi1[5]1 = SERVICE_TIME; /% set departure time ¥/ h
X 3 ’ o
T else { :
! temp = NODE_AREALil[71; !
:t i ++temp;)
4 if (temp > 59 4)
i print f("\n\nNo more queue slots are available at node "); -k
! printf("%d, server number®, NODE_AREALiI[1D1); ;
printf(* %d.*, NODE_AREALil[21); o~

' stop_it = 1; o
.: 3 l‘

¥
g else { '
~ NODE_AREALil[templ = j; /¥ queue at server ¥/ a3
NODE_AREALi1[7]1 = temp; Py
L

) "
' temp = NDDE_AREALi1[7]1 - 8; s
p if (no_done >= STARILIZE) «y
; if (STATSLil[1] < temp) /% update max_q len %/ i
P STATSLi (1] = temp; Ll
: } 3
D A
Y 3 o
3)3
K 3
save_stats(row) :
‘ /% This function saves pertinent information on messages for stats x/ :ﬁ
i /¥ analysis. It also releases the message work area for reuse, and %/ e
R /% updates total_hops thus far for all msgs that have been delivered. ¥ iy
‘ /% It is called by the destination node function when the final */ ~
- /% destination is reached. 7 s
: int row; /% points to row to be saved ¥/ Q
: ¢ 2
0
1 ",
)

it

))

‘ [4 - - L] - » 3 -y N . o “ - " - - K
) B Nh S Y Q h) ¥ OO AN N NN A
R N N L A AN A N I A X S S NI AL e) S N R S 0 :'l'.n WINSNTAY WhYS ’ v

AZLEZV RSN IR Y

i W e

‘o VY

) . \
Attt

e B W) Ok G e) e b A7 B A

/%

/%
/%
g 4
/%
¥
/%
/%
/%
/%
%
/¥
/%
/¥
/%
/¥
/%
I4 4
/¥
/%
/%
¥
/%
/%

Y

o 205 893 o¥): “ataabBals Yat i “ath™,

int i;
int temp;

savefile

if ((no_done - STABILIZE) == 1)

ks

fopen(“"statistics”, “"a");

clk_first_msg = CLOCK;

The following code is bypassed to reduce disk storage space.
The code is used to get a trace of messages used for statistics.

fprint f(savefile,
fprintf(savefile,
fprint f(savefile,

R N A AR N AR AT AV R U A DA G VN U N TTUYLS N T Y
251
¥/
X/
74
X/

"\n\n\n MSG# SIZE SF DF *);¥/
"TO-ND MDL SEND REC'V CS CD"); X/
® T-PTR\t---- MESSAGE TRACE -——-\n");¥/

fprint f(savefile, "\t\t\t\t\t\t (mdl #s) \n"); 94

3 X/

fprint f(savefile, "\n"); ¥/
i =2 ¥/
temp = MSG_AREALrowllil; ¥/
if (temp !'= 939) +!
fprintf(savefile, "%43d. ", no_done); ¥/
¥/

while (temp '= 999 { hid
if A ==3111i-== Hio==9) ¥/
fprintf(savefile, "¥7d", temp?; Y/

else ¥/
fprint f(savefile, "%4d", temp); Y/

++i; ¥/

temp = MSG_AREALrowlli]; L ¥4

3 ¥/

*/

i = MSG_AREATrowllE];
FREQLiI{11 = FREGLiIIC1] + 1;

size_graph(row);

i = 14;
temp = MSG_AREALrowllil;
while (temp '= 999 {
++total_hops;
++i;
temp = MSG_AREALrowl[i]
2
temp =1 - 14;

if (temp > max_path)

/% prepare to update dest’n address ¥/

/¥ update stats to plot size ¥/

/% update total_hops

/% find path length this msg ¥/

~

max_path = temp; /¥ update max_path length ¥/

resp_time = resp_time + (MSG_AREAlrowl(9] - MSG_AREAILrowll81);
mean_gueue(); /¥ total ave_qg, all q's ¥/
R R e N et T T

B Ol 4

- ‘-'\;-F -
L)

ol

B

T

ERERU S -

R e o)

o

YEIFEL LT

o

-

-

W e e
h -

‘-“:- P -..1,."

P B e

Y

2 e b N O N,

e T Tt el .

B I oD

T - -~

-
x5

e R e o PR e

-

P

N K]

b

-y

A RSP I

UK S
W0 AN

FRNTCR AN T RN O TR TSR R UK T R R TR DU [[P R PP TN W TW W AN U T U AT WU WS IO AWy, Wy W MRNAUNY AP VHAENAY N L

£
252 A
A]
fclose (savefile); '
MSG_AREALrowl[1] = 0; /¥ show row is now available ¥/ X
for (1 =25 i { 40; ++i) %
if (i == 12) 3,
MSG_AREALrowl[il = 12; /% reset trace pointer ¥/ 1
b
else if (i == 10 ! 1 == 11)
MSG_AREALrowllil = 0; ;
.Q
else at
MSG_AREALrowl[il = 999; /¥ clear for reuse ¥/ y
} J
!,,
set_params(m) ;
(
bV
/% This function assigns the newly arrived message a number, sets the ¥/ '
/¥ destination address, message size, spiral and direction flags, and ¥/
/% other key parameters. It is called by the arrival function. k44 g
int m; /¥ points to min_row in node_area arvay ¥/ ;
{ !
int loop; /¥ used to find free row in msg_area ¥/ .
int J;
f
++msg_no; }
loocp = O v
freel: ++location; }
if (location == LARGEST) { {
location = 0;
++loop; 3
if (Qoop == 2) { n
printf("\n\nNo wore message spaces available!"); 5
stop_it = 1; ¢
J = location;
goto quit; /¥ out of cycle quit, no more spaces #/
}
> l
J = location; /¥ used to save typing longer var ¥/ "
if (MSG_AREALjI[11 '= OO bt
goto freel; LY
MSG_AREAL jI1[O1 = j; b
MSG_AREALjI[1] = 1; /¥ show row is in use Y/ b
MSG_AREAL jI[2] = msg_no;
MSG_AREAL j1[3] = size(); /¥ set new msg size X/ XS
MSG_AREAL j1L6] = address(m); /% set the dest’'n address ¥/ '
MSG_AREAL j1[7] = ((MSG_AREALILEY / 4) + 1); /¥ set destn module Yt/
MSG_AREAL j1[8] = CLOCK;

set_flagtm, j);

L}

'h
n

L)

PR P A T, AT TR T T R TR R N W W T T tsd B & LTS) LB AT TN 2 0%] LS TS 0 TS PR 1S) '.',‘
Al e e e e M A AR S T S AR P A A ML A I e oo et SR L A s

-

i
.t
.t
¢
quit: return(j); ,
]
}]
B¢,
5
)
stage_it(x,y) "
&
/% This function determines whether or not a message has reached it's ¥/ .
/% destination module and calls the appropriate functn to procezs it. ¥/ K
/% It is called by the depavture function. */ :
int x; /% points to wmin row in node_area array ¥/ £
int y; /% points to msg locat’n msg_area array ¥/ '
¢ 3
int templ; "
int temp2; /% points to node just arrived at */ a
int server; /¥ contains server no. just vacated Y/ i
- (
templ = NODE_AREALxIL[11; /% get the minimum node number */ '
server = NODE_AREALx1[2]; /% get svr# of node just departed X/ i
A
/% The next if-else stmts find arrived at nd based on svr just left. ¥/ F‘
if (server == 1) 5
temp2 = POSITIONLtemp11L71; b
else if (server == 2) ‘t
temp2 = POSITIONCtemp11L103; ::
4
else if (server == 3) Y
temp2 = POSITION[tempi1lL131; -
3
else 4
. o
: temp2 = POSITIONItemp1][183; f
! i
; if (MS5G_AREALy1[71 == POSITION[temp21L31) /¥ dest’'n module ¥/ .
t
X if (MSG_AREALyl[E]l == templ) /% dest’n node ¥/ \
! destn_node (temp2,y); /¥ dest'n node is reached ¥/ :;
\)
2 else if (MSG_AREALyIL[E] == POSITION[temp21L71) Q
‘ if (POSITIONCtemp21[6]1 == 0) L%
gueueCtemp2 ¥ 4, y); /% take svr #1 to dest’™n %/ '
else)
kill_it(POSITIONLtemp21[71, temp2, y); A
: else if (MSG_AREALylf6] == POSITION[temp21[101) N,
! if (POSITION[temp21C91 == 0) "
} queue (temp2 ¥ 4 + 1, y); /% svr #2 to dest'n x/ '
X else .
: kill_it(POSITIONCtemp21L101, temp2, y); o
B %
k) L
. "))
: v\
|
[.-F
' Ky
1,
R O T

. o e e

- s A

PR

oy e =

N

Ggeed TW ECN ~pd R Nip cpd vk Gl Al agi e ® 4@ U R N 0 g 0,0 0 8 0 avS a8 3 0 i a4 avh 2L a2 AN U SR I “0ak N AN AN i o 4¥ WU SO & o e AVE B

254

else
if (POSITIONCtemp21012] == 0)
queue(temp2 ¥ 4 + 2, y); /% svr #3 to dest'n ¥/
else
kill_it(PDSITIONLtemp21[131, temp2, y);

else
link_node(templ,y); /% queue at link nhode ¥}/

kill_it(k, c, m)

/% This funct’n reports the inability of the network to deliver a2 msg ¥/
/% to it'’s final destination due to node failure., It also updates the ¥/
/¥ counter that keeps track of undelivered messages, and clears the %/

/¥ message area row for reuse. Called by stage_it, link_node and ¥/
/¥ source_gqg functions. ’ ¥/
int k; /¥ contains number of failed node */
int mj /¥ contains min row in msg_area matrix ¥/
int c; /% contains current node nuwber E ¥4
{

int i;

int temp; /% contains source node number */

if (MSG_AREAL[®IC131 == 999)

temp = c;
else
tewp = MSG_AREALWIC13];
/¥ The next few lines were bypassed to reduce program run time. X/

/¥ printf("\n\nMessage number %d from source node ", MSG_AREAImMIC21); »/

/¥ printf("%d to destination node %d", tewg, MSC_AREAImICE1); p ¥4
/¥ printf(” \nis killed at node %d because "J); ¥/
/¥ printf("node %Zd has failed'", ¢, k); Lo

++no_killed;

MSG_AREALm]1L1] = O /¥ show row is now availahle %/
for (i = 2; i £ 40; ++1)
if (1 == 12)
MSG_AREAIMICI] = 12;
else if (i == 10 I! i == 11}
MSG_AREALmILi] = O;
else
MS5G_AREAImILi] = 999; /% clear for reuse ¥/

P R

%X 1 ¥ W W MO WY oy L A P00 PO RN A Rt A N P O R (N N A N NN Py
a'l..'-'..-"‘!'l.a .l\’u“h g'ln - “ d" AN -(-‘lk- N \H" [\ -'l > "' AT AN \ \‘-" \.'.7'.\ \‘*\ .‘ "= \'

Lty ot » LN el

-
»

A X AT

<=

L m—"."cq'."-_(—_,:

e

h e g ey

o

A

e

N VI SRR TR R Y AT T R TUT TGN T TR R AR AR RS AR AN AKX R RRAK R "N WU W U W WU DSRFTWU VOIS TR o

255 :

oy ,
.)
% unreachable (cur_node, source_mdl, 1) \
& /¥ Unreachable reports the inability of the network to deliver a nsg ¥/
o /% to it's final destination due to the fact that the netwk is cut in %/
ﬂ /% two. In the case when the network is cut, without this function, ¥/
3 /% wmessages will loop back and forth between the 2 distant-most mdls ¥/

-

/¥ in the contained subloop. It is called by the flip_it function. */

o int cur_node; /¥ points to the current node of msg ¥/

W int source_mdl; /% the mdl where looping msg started ¥/

g' int 1; /¥ msg position in msg_area array ¥/

' ¢

3 It y
int temp;

Wy int i;

g int gone; /% flag used when mdl is unreachable */ 3

)

s if (MSG_AREAC11[13]1 == 999)

temp = cur_node;
else

ﬁ temp = MSG_AREAL11013]; é
Q‘g K
% /¥ The next few lines of code was skipped to reduce progran ruv time, ¥/ :
3 }
o, /¥ printf("\n\nMessage number %d from source "J); ¥4 »
/¥ printf("madule ", MSG_AREAL11[21); ¥/
5 /% printf("%d to destination module %Zd", source_mdl, MSG_AREATIIL71); */ 3
Q Z¥ printf(" \nis killed at node %d because module ", temp); ¥/)
; /¥ printf("/d is inaccessible to"); ¥/ [t
¥ /% printf(" module Zd'", MSG_AREAL11{71, source_mdl); X/ A
! §
A ¢
++ no_killed;
% MSG_AREAL11[11 = ©; /¥ show row is now available ¥/ \
R for (i = 2; i < 40; ++i)
K if (i ==12)
* MSG_AREAL11[il = 12;
! else if (i == 10 !! i == 11) .
MSG_AREAL11[il = O; n
o else
p MSG_AREAL11Li] = 999; /¥ clear for reuse %/
' gone = 1; d
. ;
i return(gone); g
}
)
3 P,
! t
! set_flag(m, 1) {
\ :
- /¥ Set_flag sets spiral and direction flags for newly arrived msges. ¥/
/¥ It is called by the set_params function. b 74
.‘ ‘I
) .|
5 int m; /% points to min_row in ncde_area array Y/ ,
{ g
. ,
D y
'
) N
" :
‘:’ I, l?.'leo\u'l.u".n'\’o"’b"!C"J"-’".o". :Q.‘. 4 '.'.' -!"'0.0!‘.0.0. . I (X " LA . RIS v * Ly _}.- v "‘ N .‘ “ S { . 0"'

P T R S PO T I S TS T S e S TR T TS S WU TS T S S M S P T T S T T o e TR R YR T, TR PO TR 7" T PO PO POR PO O PO ™LX ™ MR,

J '
K
. !
X]
X 256 \
]
.)
o int 1; /¥ points to location in msg_area arvay ¥/ :
2 X
{
v int templ; }
K int temp2; "
i U
‘.
¢ templ = MSG_AREAC1ILE]; g
s temp2 = POSITIONCtempl][11 & 003; /¥ pick off lower 2 bits */ X
' if ((temp2 == 0) | (temp2 == 1)) /¥ top spiral */ 4
o MSG_AREAL11[41 = O; It
; else 5
. MSG_AREAL11[4]1 = 1; /¥ bottom spiral */ d
) if (dirl == 0) /% set up matrix to find DF X/
N dir(); ,
! DF_set (m, 1); !
[} ’
R M :
] .%
4. 4
-
: double rndm() ’
¥)
; /% This function returns a random number between O and 1. Called by ¥/ g
; /% the size and next_msg function. X/ !
N \
{
i) float normalize; :
" unsigned int y; ¥
ﬁ double temp; Y
1 '
! y = randQ); A
normalize = pow(2.0, 31.00 - 1;
h temp = y / normalize; N
4 veturn((double)temp); ;
!‘ }
I' .Q
! :
size()
K
: /% This function calculates a random size for the next message, based ¥/ .
4 /% on an exponential distribution. Called by the set_params funct’n. ¥/ .
0 R
{ o
float length;
3 double rndm(); 1
\ {
;' again: length = (-mean_size % log(rndn())) ¥ 8.0; :
) if (SERVICE_TIME < 1) !
: goto again; N
! return(length); N
.-' } X
i' i
. <
n' .o
N l
3

K

'8
R0 ' $51 IR ORISR RIRC " (M0 L0 0 0, T (M M T T e T e T ' J
-ml')l.-'A‘.‘s'..l"ll..’t')l’t‘l’.'t‘.‘l'.‘l'..t'ﬁ PO ATOC DU R R l""n ':.I’."‘..l\.a’._b‘..h'., A l‘._l‘qfo’..o‘.‘l‘..l'. N)’.,‘..0‘.’!‘. U LRI S AN O SIS ittt

AT SR PO SRR RN AR RN R R KA N N T TTUN Y PR IR CANRAR BA R XU N CA RN S R WL 0. TR T L R U OOe TR U N IR AN TR O O

“ 257

¢ \
?%' (]
. ()
‘{
addr ess (m)
v
,‘t
5 /¥ This function generates the address for newly arrived messages. It ¥/ ‘
0 /% is called by the set_params function. */ :
i U
A int m; /¥ points to min_row in nhode_area matrix %/ ;
% { 4
8 s
(3 int i; 3
o . . !
iy unsigned int tenp; ;
i nextl: temp = rand(); !
i = temp % nodes;
W .
% if ({i >= nodes) I! (i == NODE_AREALm]I[11)) ‘
4 gota nextl; :
it /% else ¢) */
K /% The next three lines were bypassed to reduce program run time. L ¥4 !
“_]]
ﬁ ' Ig 4 print f("\n\nNode %d is sending to dest'n ", NODE_AREATmIC1]); %/ '
g /% printf("node %d.", i); ¥/ :
R T4 4 b */ ¥
¥
b N
" return(i); y
] 3 .
X !
; next_msg() N
£ v
Y /% This function calculates and returns the arrival time (in msec<) 4
‘ /¥ for the next message. The value returned 1s selected fror an ¥/ ’
K> /% exponential probability distribution, which means the message L 94 e
M /% arvival pattern follows a poisson arrival process. Next_msg ics ¥/ \
i /% called by the initialize and arrival functions. Y/
o
[{
double rndm(); o
A float time;
’l '3
g nextl: time = -IAT ¥ log(rndm(}); f
Y if (time < 1) Y
goto nextl; \
& return (time); }
: } '
; U
: 1
’
¥ write_matrix() ‘
S /¥ This function prints the network connectivity matrix. */ A
X ’
Iy S
» *
2 i
: w1

. . 9
1y W OO 1 [ML ; LV L A A PP ATAY R L P N A N Pt
3¢ ‘1%‘1'-‘!’2’!’5‘!’-’!'-" .:‘\‘I!I‘l.“l..'.- 0."]. .lg..h“.h p LN TLOS !‘.l '..\ AN P.- y -.‘.~ N l'?.ﬂ 8 " ,\" .\ SV ot) % %! el B

e iy
o

N

e e gk
I ot AP

£ qm
o

Pl

RO) \ 3) W) N) PSR L L UL AT RSO R IS LY U 1S & I8 g
A "A.x‘.‘»‘!‘5".”:’!’1".'-‘!'a‘?’:"'\"‘e‘..9‘!‘ai ‘J"-’)"‘X"‘l"‘l’& of. n‘!‘l'a q’?‘l LX) \‘,‘c"'l‘-‘."‘l‘ A AL AN N R \\' "‘Y\" Loy < - " ’ Ny et o) l.',hh".'-"-

IR AR MR AN A W IR AL WU AU VY NU N NG U N RN A U A AN RN VNN LA TN R K AN ¥, ¥ $28. 723V, TR

'

258 X

i

d

{ 3
int ij;
int j;

v
printf(" (0"); ‘
for (i = 1; i 1 19; ++i) :

print f("25d", iJ;)
printf(*)"); !
printf("\n\n\n");
for (i = 0; i < nodes; ++i) {
printf(™\n\n"); A
printf("%4d", i); i
for (j =1; j € 19; ++j) :
if (j == vy == i j==81! j==1111 j == 16} /
printf("%Sc", POSITIONLIlLjD);
else X
printf("%Sd", POSITIONCiIILj1); {
) i
H 1
pGFELO) ;
/% This function prints the global future events list. X/
{
int i;
int j;
for (i = 1; i <= cur_modules; ++i) ¢]
print f("\n\n"); :
for (j = 0; j < 3; ++j) N
print f("\t¥5d", GFELLil[j1);
))
) .
pNDDE_AREA () :
/% This function printe the node_area matrix. L4)
]
{ ?
int i;
int j;
printf("\n\n\n"); ¢
for (1 = 0; i < 10; ++i) {
printf(*\nm\n");
for (j =0; j < 28; ++)))
print f("%5d", NODE_AREALiIIL j1); N
}
} G

]

:4

.,

.

RN R O R R A NN LA AR A X R A AN N AN PR A NAN VR WRN RN KU N L TR WA W N M5 U TN U W, L W T T T O I T O™,

259
pSTATS ()
/%X This function prints the STATS watrix.
{
int ij;
int j;
printf("\n\n");
for (i = 0; i < 64; ++i) {
printf("\n");
; for (j =0; j <S5 ++))
! printf("%15d", STATSLilL[j1);
3
¥
dir O

/¥ This function sets up the work matrix used to find the distance
X /% from source module to destination mdl. Sets END to cdezi’n, BEGIN
i /¥ to source. It does so by establishing an array of module nurhers
/% in the order the modules are accessed via the network threading
! /% pattern. The access pattern iIs not segquential! dirf) is called by
/% the set_flag function.

{
int temp;
int k;
, int next;
! int module;
dirl = 1;
temp = 0;
i for (k = 0; k < cur_modules; ++k) {
! next = POSITIONCtemplLl71;
temp = POSITIONCnext1[181];
module = POSITIONInext1C14];
) DIRLKILOT = k;
1 DIRCKIC1] = module;
: }
}

DF _setf(m, 1>

/% This function uses the DIP matrix to set the direction flag. It
/¥ insures that the path taken in the shortest in every case. It is
/% called by the set_flag function.

int m; /% points to min_row in node_area array

I A 36 0500 VORI T AT T KT A AR a T e TN A TR W N T T A T AT TR A AT S @
‘.,’-)t”a‘.'!"'a‘.'&‘t'p&"“ 2 000 L S .l.‘.i",i'-..J..Q..!‘..‘. O .',\.i YT A, . X .O O S P

2o X M Y (O AN

I
*i

h 74
X/
X/
p. 34

’
k¥

¥/
%/
x/

X/

»
o
13
SRR LRI T !
R

R . ¥

PP IR WU U U T 00 TU R I R RN KR AN T AR LR LN Vo R LI L0 | N TRy 1A ROV W U W Y YO TR OV O T O R T R R W W R M Ty

i 260

'kl int 1; /% points to location in msg_area array ¥/ |
’i
{
o ' int k; t
W int temp3; /
2 .
@. int tenmp; :
ﬁ‘ int templ;
o
temp = NODE_AREALmIL11]; /% get node # of wmin activitly #/
1“ for (k = 0; k < cur_modules; ++k) {
;? if (DIRCKIC11 == MSG_AREAL11L71) /% destination module */
if END = DIRCKkI[O1;
u if (DIRLKIL1] == POSITIONLtempl[31) /% source module 7/
Yo BEGIN = DIRCKILOI;
}
.‘,t d .
N temp3 = END - BEGIN; /% find the distance fm source to dest’n %/
AD 4
! g
?; /% 1f the number of modules is odd, then the maximum distance between %/ y
ﬁ: /% any twoc is an even integer, thus the maximum path length is alsoc ¥/ ;
/¥ even (even #/2). So the paths split in exactly half. When the X/
RN /% distance is the same in both directions, the algorithm selects ¥/
a&) /¥ with probability .5 either of the directions. This selecticnh is ¥/ :
?, /¥ made based on whether the destination is to the left or right of ¥/ f
;q /% the source. %/ 8
‘ !
».
if (cur_modules %L 2 == 1) { /¥ 0dd number of modules ¥/
Y temp! = cur_mcdules/2;
* if (tenmpl <= templ && templ > 0) \
M MSG_AREAL11LS5] = 1; /¥ go in the left direction ¥/]
{
g! else if (temp3 < -templ) ¢
i MSG_AREA[11[3] = {; /¥ go in the left direction ¥/
¥ ;
. else :
5 MSG_AREAL11[351 = 0; /¥ go in the right direction #*/)
;; ’ {
/%t 1f the number of modules is even, the maximum distance between’em ¥/
¥ /% is an odd integer, which divided in half yields a remainder term. ¥/
{ /¥ 1f the mdle distance is the same in both directions, a subroutine ¥/
) /¥ called "equal" is called to set DF based on the location of the X/
o /* S/D nodes on the Source/Destination module. X/
else { /% Even number of modules' ¥/
s templ = cur_modules/2; 3
i..
cf if (temp3 < templ &% temp3 > 0} /% strictly less than cacse ¥/
" MSG_AREAL11LS] = 1; /¥ go in the left direction ¥/
4
|
else if (tempZ < -templ) /% another ¢ case, still ¥y
&) MSG_AREAL11[T] = 1; /¥ go in the left direction ¥/
: :
p ‘
R ,

o T ™ ™ P

0
(A~ . - LI E SRR : - » yun R - e T P Tt A T " ; - " .
RO T O Ay Sy S A O KA e X TS LN NGt AL EDLATRR RN

......

KR TIPS VRS WA W U LU WU WU WU P UWS . W AT WL W, T T U U N L K Y O N R U WO O WO YO

261

else if ((temp3 > -templ &% temp3 < 0) {! (temp3 > templ))
MSG_AREAL11LS5] = 0; /% go in the right direction

else /¥ the case when templ equals temp3
equal (m, 1); /% so call "egual"™ to examine 5/D nodes
),

equal (=, 1)

/% This short function is the last option to setting the DF when the
/% distance from source module to destination module is exactly
/% equal in both directions. It is called by the DF_cet functizn

int m; /¥ points to min_row in node_area matriyx
int 1; /¥ points to msg location in msg_area matrix

{
if ((NODE_AREALmIC11 % 2 == 0> && (MSG_AREA[11L6] % 2 == 1))
/¥ s-even, d-odd : 94
MSG_AREA[L11[S] = O /¥ go to the right ¥/
else if ((NODE_AREALmIL11 % 2 1) &% (MSG_AREAL11[&]1 % 2 == 03)
/¥ s—odd, d-even ¥4
MSG_AREA[13LS] = 1; /¥ go to the left ¥/
else if ((NODE_AREALmIC1Y % 2 0) &% (MSG_AREATII[B] % 2 == O
/¥ s % d even ¥/
MSG_AREA[13L5] 1; /¥ go to the left ¥/
else
MSG_AREACL11[5] 0; /% go to the right 37/

pMSG_AREA ()
/¥ This function prints the message_area matrix.

{
int m;
int n;

printf("\nm\n\n");
for (m = 0; m < 20; ++m)
printf("\n\n");
for (n = 0; n < 30; ++n)
print f("%5d", MSG_AREALmILnl);
3

source_q(m, 1)

/% This function ensures that newly arrived messages at each node are ¥/

"‘
Nercs 0 WO \ e N AT T A 1 (LU Y SIS IR Y "2 A AL W
R R o A T R AL LW R TS R It Ot LA AL I

262

/% placed on the correct output gueue from that nd. Since "new’ nsgs ¥/

/¥ arrive at the links of the node, failure tc transfer then to the %/ 1

/¥ proper output queue from that node lengthens the route towarde the ¥/
) /% destination. This function is called by the arrival function. X/ "
' 4
: int w; /% points to min_row in node_area array ¥/ E
s int 1; /¥ points to msg_posn in msg_area array #/ }
% y

{
‘S 'v
;; int templ; /% points to node msg just arrived at ¥/ "
) templ = NODE_AREALmMIC1]; /¥ get node msg just arrived at L2 :
3 .
§ £
K if (MSG_AREAL11[7] !'= POSITIONI[templlL31) /¥ dest®n module M/ X,

link_node(templ, 1);

: else
¥ if (MSG_ARTACLIILE] == POSITIONCtemp11L71) /% find dect’n nd ¥/ v
if (POSITION(Ctemp1l[E] == 0) &

gueue (templ ¥ 4, 1); /¥ svr #1 to decstinaticn %/ o

[

else

kill_it(POSITIONCtemp11[71, templ, 1); 3

else if (MSG_AREA[11LE] == POSITIONCtempllC121)
if (POSITION[tenpl1l1r9] == O
queue(templ ¥ 4 + 1, 13, /¥ svr 82 to dest'n ¥/ ®

e e e w ek

else

kill_it(POSITIONCtemp11L101, templ, 1);

if (MSG_AREAC11[6] == POSITION{templl[1Z2D)
) if (POSITION[templ11L12] == O)

¥ queue(templ ¥ 4 + 2, 1); /¥ svr #3 to dest’'n ¥/
' else

kill_it(POSITIONItemp11L131, temp?, 1);

printf("\n\nlogic error in source_q function'");

address_cnt ()

/% This function saves the count of the number of msgs cert to each ¥/ .
/% node in the network. This information is stored in a file calles ¥/ ~
/¥ destination. This function is called by the simulate furnctien. ¥

{
int i;

frequency = fopen("destination”, "a");
fprint f{frequency, "\n\n\n NODE NO_MSGS\n\n");

for (i = 0; i < nodes; ++i) {

Mot

Pl o ¥ X 4

- A e s e e

P M ey Y AT S e U
RN IR N

-0":'!‘a'..‘l'!.l.?.l‘!‘...'l‘i'?”l‘!’!"'d’n l‘. .ol . .:l.'!!'.!". i".l‘nhl‘!.. ‘ "l. :) '!."z‘":‘l... '.- ‘!“l." ’ " o Wy N

AR KUY A SN L Sa et M g B N ad T R R O 7 A W o ALK AT W Ko N M o EO AR M AR AN WA I WA W N R XU NS PU AR LX)

Pl N

) .
: Y,
&
: 263 3
;f fprintf(frequency, "\t%d \t%d", FREGLi1[Q], FRERLiI[11); ﬁ
¢ fprint f(frequency, "\n"J; xd
)
:
fclose(frequency); 5
3 "
\
i p
A]
, size_graph(row) -
) f
3 /%t Size_graphs generates stats used to plot the message size graphs. */ 0y
K /¥ It is called by the save_stats function. ¥/ n
’ e
int row; X
{ \/
K. int stepl; :)
! int stepz; it
P . R
4 int temp; &
! o
2 if (MSS_AREACrowl[31 < 2000) +
- ++S5TATSLOIL3T;
:

‘ else if (MSG_AREALrowl[31 »= 38003 :
» ++STATS[191L31; 9
: 0
W else { .
- step2 = 2;

. for (stepl = 2; stepl < 20; +istepl) he
: if((MSG_AREALrowll3] >= 1000 ¥ stepl) &% ;‘
(MSG_AREALrowl[3]1 < 2000 % stepl)) { M
4 tenp = step! - 1; ~
s ++STATS[tempIL[3];
step2 = 2 ¥ stepl; O
. Rt
J i Y
K, 3 ~
) A
- P R
A
’ -
graphs()
iy X
/% This function saves the numbers used to sketch the graphs .f msg ¥/ 2
/¥ size and interarrival time distributions. It moves these valuez ¥/
/¥ from a matrix called STATS into a file ca.led graphs. This funct’n ¥/
/% is called by the simulate function. ¥/ -
D { ,
int stepl; -
int stepZ; :'
int temp; oy
int temp2; '
. graphit = {fopen("graphs", "a"); <
by fprint f(graphit, "\n\n\n\t\t MSG SIZE STATS"); A
! }
o
) .‘
, N
R TR AT . e e N AT A P e T o PO P o et s 2 S

R R T R I T N O T o R Y R Y S R R U I R R R R S O O X TRy & ! ol Uy ko) Gl i

264

fpruint f(graphit, "\n\n class# class range frequency”);

step2 = 3; :
fprint f(graphit, "\n\n\tl. i H .
temp2 = STATS[OI[3]; :
fprintf(graphit, " 0 < 3000\t%d", temp2); ;

e n s i e

for (stepl = 2; stepl < 20; ++stepld {
temp = stepl - 1; v
fprintf(graphit, "\n\n\tid.", stepl); Y

if (stepl < 10)
fprintf(graphit, " ™);

tewmp2 = STATSCtemplC3]; -

fprintf(graphit, " %5d < 7%5d", 1000 ¥ step2, 3000 % stepl); z

fprintf(graphit, * \tid", temp2); &

step2 = 3 ¥ stepl;

T A -

fprint f(graphit, "\n\n\t20. "); 4+
temp2 = STATS[191[31;) '
fprint f(graphit, " » = 57000\t%d", temp2); .
fprintf(graphit, "\n\n\n\n\n\n\n\n\n");

mean_queue ()

/% Mean_queue updates the running total used to find the mean gqueve]
$ /% length at the end of the simulation run. It is called by the save_ %/ y
/¥ stats function. s 44 !

{ 4

int i;
- int j;
|: int k;
K int failed_nodes; ?
b int templ;]
X int zeroes;)

float temnp;
float temp2;

Zerges =
2eroes =

for (i = 0; i { nodes; ++i)
if (POSITIONLilC[2] == 1)
++failed_nodes;

for (i = 0; 1 < nodes ¥ 4; ++i) { /% get total! g length sum ¥/

g
o | NP N AT AT AT Rk U T ey 0 e Y R P Y P e S o A AT TR AT AT AT AT TRPCR
"‘-* ST .‘. f\ \ Al J) i (‘o ’ alal ak v --. -' ~ W \ » X !' ~ -~ ‘. > KX .‘ e, ||§-' -‘“‘

‘-"4“."‘.

3

AP P I AT Mt A I I I L L L R S P W R AR A L A R R R A A R AN AN A A N A N R I T T S T N Y I N N TV LY UF Y UV U O AN AU Y

7 :
i J
B)
¢
A]
.)
4 265 v
K #
] J = NODE_AREALi1[7];
it tewpl = j - B;
/% k = i/4; Y/
")
)
' /% if (POSITIONLKIL2] == O &% templ == Q) ¥/ :
3 /% ++zeroes; /% count # of empty qucuec 1 '
3 /% else if (POSITIONCKIL2] == 0) ¥/]
3 temp = temp + templ; \
b
i; :
y templ = (hodes - failed_nodes) ¥ 4; v
i temp2 = temp / (templ - zeroes); ¢
) ave_q_length = ave_q_length + temp2; /% sum of ave_q length when %/ ¢
¢ /% each message is delivered ¥/ :
}
g.‘ (]
) N
¢ ik
) reports() J
¢ b
i . 0
“ /% This function calculates and reports for study, results of the X/ i
p) /% simulation vrun. It is called by the simulate funcion. 74
; c !
bt int i; V
K] int n; t

-~
-
» -

int left_msgs;
int failed_nodes;

: int tempi; ‘!
; int j; "
D int mean_time; /¥ mean msg tx time per hop pid ﬁ
; int network_time; /¥ for time til next msg del’d ¥/ 4
¢ float temp;)
. float teup2; ,
) float m; A
: float p; o

float 1;
b float k;
2 float d;
> float ave_path; 1
? float ave_delay; /% to find ave n/wh recsp time ¥/
" float delay_hop; /¥ average message delay/hop ¥/)
»
failed_ncdes = 0; <)
statsfile = fopen(“"summary”, "a"); :
; fprintf(statsfile, "\n\n\n\n"); ’
) fprintf(statsfile, "\n\n \t\t\tSUMMARY OF SIMULATION RESULTS"); b
fprintf(statsfile, "\n\n\n"); 0
\ fprintf(statsfile, " \t\tNumber of modules fnodes):\t\t"); .
fprint f(statsfile, "%d (%d)", max_modules, nodes); t
y
> J =% :
i=0; A
g fprintf(statsfile, "\n\n \t\tFailed module(s):\n\t\t "); A
L) '
:)
\ A

;,:_\.' -,. -.} -.' ‘-. o \:,'\ ~

l‘-‘ L2 'F‘ ¢~r.-,.~*v ',".-l '.l .‘._' [] ’~! N'.'- ~' NQ,.q'.'.N‘q A" ~..’*.- .
' . U OGRS W b U i M W M WL e M A g R W,

w " o W LN Wy o o o'
b ,.c.... .o. ! ...)

R R X R AT A A T RN A R R RN R AN O A W N A Y o N N U R N N RS N s S N O U O O A O O A O A O A AU N Y I A PO IR Y
3 x A

while (i ¢ nodes) {
if (POSITIONLiI[4]1 == 1) {

fprintf(statsfile, "%4d", POSITIONCiIL3D);
+HJ;

o -
!

3
i =1+ 4;
b

et w

if (j =0
fprint f(statsfile, " NONE!");

PR,
-

J =05
n = 0;
fprint f(statsfile, "\n\n");
fprintf(statsfile, * \t\tfFailed node(s) (including those ");
fprintfistatsfile, "in failed modules):\n\t\t ");
for (i = 0; i { nodes; ++i)
if (POSITIONCiIC2] == 1) {
fprintf(statsfile, "%4d", i);
++3;
++failed_nodes;
++n;
if (n > 10) {
nh = 0;
fprintf(statsfile, "\n \t\t ");
3

PP
o

3
if (j ==0)
fprintf(statsfile, " NONE'™);

mean_time = (1000 ¥ mearn_size ¥ 8) / RATE; /% trns time in msece ¥/
if (mean_time > (resp_time / max_msgs))
mean_time = vesp_time / max_musgs;

if ((clk_last_msg - clk_first_msg) < mean_time)
network_time = mean_time; /¥ total time it takes to 3/

/¥ deliver max_msgs Y/
else

network_time = clk_last_msg - clk_tirst_msg;

temp2 = max_msgs;
temp = network_time;

1 = temp /7 tempZ; /% time "til nxt msg delivered
left_msgs = msg_no - (STABILIZE + no_killed + max_msgs);

temp = 0;
for (i = 0; i < nodes ¥ 4; ++i)

temp = temp + STATSLiIL21; /% total time all svrs busy
k = temp / ((nhodes - failed_nodes) ¥ 4); /¥ ave link busy timwe

m =k / network_time; /¥ prob that a link is busy
if (m > 1) /¥ this text is needed since
m=1; /¥ severzl msgs can arrive in ¥
/¥ short period of time

N N T i

T YA AR OGN OO NONILAE X KIS Tt SN A 0 s

P L TP AR TYPeT ML APLELE AP W L AT TSI NS, N

o & roev

' templ = 0;

U I WL L A WL N

L N AT L I L L LT LA W M M LLICL 8 AN

267

temp = STATS[templ11[1];

e

o m e e

n tenp;

p ave_q_length /

R

tenp = resp_time;
3] temp2 = max_msgs;

ave_path = total_hops / wax_msgs;

X ave_delay = temp / tempZ2;

delay_hop = ave_delay / ave_path;

for (i = 1; i < nodes ¥ 4; ++i) {
if (STATSCiIL1] > temp) {
temp = STATSLil[11;
tenpl = i;

%
/¥

find the maximum q length
S

corresp node/svr it's zt

)
¥

/¥ leave it ir variable n

max_msgs; /% find average queue length

/¥ find average path length

/¥ average delay per msg/hop

/¥ find ave delay/msg/hop

if (delay_hop <= mean_time) {

d = 0;

else

P) 4’!%“-’.'

d = delay_hop

fprint f(statsfile,
fprintf(statsfile,
fprintf(statsfile,
fprint f(statsfile,
fprintf(statsfile,
4 fprintf(statsfile,
: fprint f(statsfile,
[

¢

oA Nt

-
s

s

-,

fprint f(statsfile,
ﬁ fprintf(statsfile,
) fprintf(statsfile,
A fprint f(statsfile,
% fprintf(statsfile,
o fprint f(statsfile,
) fprintf(statsfile,
o fprint f(statsfile,
Al fprintf(statsfile,
fprintf(statsfile,
fprintf(statsfile,

if (n >0 {

delay_hop = mean_time;

- mean_time; /% average queueing time/m=g

"\n\n \t\tMean message size:");
"\t\t\tZd bits", mean_size ¥ BY;

"\n\n \t\tlLine speed all links:\t\t\t");
"%d bits/sec", RATE);

"\n\n \t\tMean message irterarrival ")
"time:\t\t%d msecs", IAT);

"\n\n \t\tTotal mecssages ");
"generated:\t\t%d", msg_nc);

"\n\n \t\tMessages delivered before");

" gtats:\tZd", STABILIZE);

"\n\n \t\tMessages used for");

* statistics:\t\tid", max_msgs);

"\n\n \t\tMessages undelivered due to ");
"failure(s):\t%d", no_killed);

"\n\n \t\tMessages left in network");
":\t\tid", left_msgs);

"\n\n \t\tMaximum queue "};
"length:\t\t\t%d msgs”, n);

N LN U NY VNP LN el &

¥/
¥’

Y/

fprint f(statsfile,

fprintf(statsfile,

fprintf(statsfile,

fprintf(statsfile,
3

K 8, 5 YN ; OO OO 0
RN A AL B D LA DO N KRR A R A A 2 A S MO A

"\n\n \t\tNode with max queue:z\t\t\t");
“%d", NODE_AREALtemp1ll1d);
*\n\n \t\tLink with max gqueue:\t\t\t");
"%d", NODE_AREA[temp13I[21);

T ST O DA NI A O n

rpr
orts,o!

TP U R

-

= T

s

'+

0y

O |¢

AR TR

LR T R L S e I R T S T T L

268

else {

fprintf(statsfile, "\n\n \t\tNode with ");

fprintf(statsfile, “max queue:\t\t\tNONE");

fprintf(statsfile, "\n\n \t\tlink with ");

fprintf(statsfile, "max queue:\t\t\tNONE");

b

fprintf(statsfile, "\n\n \t\tMean queue ");
fprintf(statsfile, "length:\t\t\tiL.6f msgs", p’;
fprintf(statsfile, “\n\n \t\tMaximum path length:\t\t\t");
fprint f{statsfile, "%d hops", max_path);
fprintf(statsfile, "\n\n \t\tMean path length:\t\t\t");
fprintf(statsfile, "%Z.4f hops", ave_path);
fprintf(statsfile, "\n\n \t\tMean response time per™);
fprintf(statsfile, " message:\t\tZ.4f msecs”, ave_delay);
fprintf(statsfile, "\n\n \t\tMean delay/hop:\t\t\t t");
fprint f(statsfile, "%Z.4f msecs”, delay_hopl;
fprintf(statsfile, "\n\n \t\tMean transmission tims=/hope"?;
fprint f(statsfile, "\t\ti%d msecs", mean_time);
fprintf(statsfile, “\n\n \t\tMean queueing time’ hop:");
fprintf(statsfile, "\t\t\t%.4f msecs”, d);
: fprintfistatsfile, "\n\n \t\tMean link busy time:");
; fprintf(statsfile, "\t\t\t%Z.4f msecs", I);
\ fprintf(statsfile, "\n\n \t\tProbability of link busy");
fprintf(statsfile, " (rhod i\t EULEFY, md;
fprintf(statsfile, "\n\n \t\tProbability msg doec not queue");
fprintf(statsfile, ":\t\tZ.6f", 1 - m);
fprintf(statsfile, "\n\n\n\n\n\n\n\n\n");

fclose(statsfile);

)
e ¥y
AN

---- . PRI
KL RN ; .-- RS ’-"' Pyl

[
¢

LT ™) EYVEIES o

N o, -f"..fhl' VW T
P 1.0.1.0 Aty i O.I'l\ﬁml:' D! > (A '9. W W AOSN

Kt -
sl il lalialvalie

